High molecular weight kininogen utilizes heparan sulfate proteoglycans for accumulation on endothelial cells

被引:105
作者
Renné, T
Dedio, J
David, G
Müller-Ester, W
机构
[1] Goethe Univ Frankfurt, Inst Biochem 2, D-60590 Frankfurt, Germany
[2] Univ Leuven, Ctr Human Genet, B-3000 Louvain, Belgium
[3] Flanders Interuniv Inst Biotechnol, Ctr Human Genet, B-3000 Louvain, Belgium
关键词
D O I
10.1074/jbc.M000313200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kininogens, the high molecular weight precursor of vasoactive kinins, bind to a wide variety of cells in a specific, reversible, and saturable manner. The cell docking sites have been mapped to domains D3 and D5(H) of kininogens; however, the corresponding cellular acceptor sites are not fully established. To characterize the major cell binding sites for kininogens exposed by the endothelial cell line EA.hy926, we digested intact cells with trypsin and other proteases and found a time- and concentration-dependent loss of I-125-labeled high molecular weight kininogen (H-kininogen) binding capacity (up to 82%), indicating that proteins are crucially involved in kininogen cell attachment. Cell surface digestion with heparinases similarly reduced kininogen binding capacity (up to 78%), and the combined action of heparinases and trypsin almost eliminated kininogen binding (up to 85%), suggesting that proteoglycans of the heparan sulfate type are intimately involved. Consistently, inhibitors such as p-nitrophenyl-beta -D-xylopyranoside and chlorate interfering with heparan sulfate proteoglycan biosynthesis reduced the total number of kininogen binding sites in a time- and concentration-dependent manner (up to 67%). In vitro binding studies demonstrated that biotinylated H-kininogen binds to heparan sulfate glycosaminoglycans via domains D3 and D5(H) and that the presence of Zn2+ promotes this association. Cloning and over-expression of the major endothelial heparan sulfate-type proteoglycans syndecan-1, syndecan-2, syndecan-4, and glypican in HEK293t cells significantly increased total heparan sulfate at the cell surface and thus the number of kininogen binding sites (up to 3.3-fold). This gain in kininogen binding capacity was completely abolished by treating transfected cells with heparinases. We conclude that heparan sulfate proteoglycans on the surface of endothelial cells provide a platform for the local accumulation of kininogens on the vascular lining. This accumulation may allow the circumscribed release of short-lived kinins from their precursor molecules in close proximity to their sites of action.
引用
收藏
页码:33688 / 33696
页数:9
相关论文
共 53 条
[1]   CHARACTERIZATION OF HEPARAN-SULFATE OLIGOSACCHARIDES THAT BIND TO HEPATOCYTE GROWTH-FACTOR [J].
ASHIKARI, S ;
HABUCHI, H ;
KIMATA, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) :29586-29593
[2]   Functions of cell surface heparan sulfate proteoglycans [J].
Bernfield, M ;
Götte, M ;
Park, PW ;
Reizes, O ;
Fitzgerald, ML ;
Lincecum, J ;
Zako, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :729-777
[3]  
BJORK I, 1989, BIOCHEMISTRY-US, V28, P1213
[4]   Histidine-proline-rich glycoprotein as a plasma pH sensor - Modulation of its interaction with glycosaminoglycans by pH and metals [J].
Borza, DB ;
Morgan, WT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (10) :5493-5499
[5]  
Carey DJ, 1997, BIOCHEM J, V327, P1
[6]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[7]   Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor [J].
Colman, RW ;
Pixley, RA ;
Najamunnisa, S ;
Yan, WY ;
Wang, JY ;
Mazar, A ;
McCrae, KR .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (06) :1481-1487
[8]   Contact system: A vascular biology modulator with anticoagulant, Profibrinolytic, antiadhesive, and proinflammatory attributes [J].
Colman, RW ;
Schmaier, AH .
BLOOD, 1997, 90 (10) :3819-3843
[9]   CDNA CLONING AND COMPLETE PRIMARY STRUCTURE OF THE ALPHA-SUBUNIT OF A LEUKOCYTE ADHESION GLYCOPROTEIN, P150,95 [J].
CORBI, AL ;
MILLER, LJ ;
OCONNOR, K ;
LARSON, RS ;
SPRINGER, TA .
EMBO JOURNAL, 1987, 6 (13) :4023-4028
[10]  
CRUZ MA, 1993, J BIOL CHEM, V268, P21238