Collaborative competition mechanism for gene activation in vivo

被引:139
作者
Miller, JA [1 ]
Widom, J [1 ]
机构
[1] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA
关键词
D O I
10.1128/MCB.23.5.1623-1632.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism by which gene regulatory proteins gain access to their DNA target sites is not known. In vitro, binding is inherently cooperative between arbitrary DNA binding proteins whose target sites are located within the same nucleosome. We refer to such competition-based cooperativity as collaborative competition. Here we show that arbitrarily chosen foreign DNA binding proteins, LexA and Tet repressor, cooperate with an adjacently binding endogenous activator protein, Gen4, to coactivate expression of chromosomal reporter genes in Saccharomyces cerevisiae. Coactivation requires that the cooperating target sites be within a nucleosome-length distance; it leads to increased occupancy by Gen4 at its binding site; and it requires both Gen5 and Swi/Snf which, at an endogenous Gen4-dependent promoter, act subsequent to Gen4 binding. These results imply that collaborative competition contributes to gene regulation in vivo. They further imply that, even in the presence of the cell's full wild-type complement of chromatin remodeling factors, competition of regulatory proteins with histone octamer for access to regulatory target sites remains a quantitative determinant of gene expression levels. We speculate that initial target site recognition and binding may occur via spontaneous nucleosomal site exposure, with remodeling factor action required downstream to lock in higher levels of regulatory protein occupancy.
引用
收藏
页码:1623 / 1632
页数:10
相关论文
共 56 条
[1]  
ADAMS CC, 1995, MOL CELL BIOL, V15, P1405
[2]   Monitoring the GCN4 protein-mediated response in the yeast Saccharomyces cerevisiae [J].
Albrecht, G ;
Mösch, HU ;
Hoffmann, B ;
Reusser, U ;
Braus, GH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :12696-12702
[3]   Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation [J].
Anderson, JD ;
Thåström, A ;
Widom, J .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (20) :7147-7157
[4]  
Ausubel FA, 1995, CURRENT PROTOCOLS MO
[5]   ATP-dependent nucleosomere modeling [J].
Becker, PB ;
Hörz, W .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :247-273
[6]   Dosage-dependent gene regulation in multicellular eukaryotes: Implications for dosage compensation, aneuploid syndromes, and quantitative traits [J].
Birchler, JA ;
Bhadra, U ;
Bhadra, MP ;
Auger, DL .
DEVELOPMENTAL BIOLOGY, 2001, 234 (02) :275-288
[7]   DISTINGUISHING BETWEEN MECHANISMS OF EUKARYOTIC TRANSCRIPTIONAL ACTIVATION WITH BACTERIOPHAGE-T7 RNA-POLYMERASE [J].
CHEN, W ;
TABOR, S ;
STRUHL, K .
CELL, 1987, 50 (07) :1047-1055
[8]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[9]   Missense mutations of human homeoboxes: A review [J].
D'Elia, AV ;
Tell, G ;
Paron, I ;
Pellizzari, L ;
Lonigro, R ;
Damante, G .
HUMAN MUTATION, 2001, 18 (05) :361-374
[10]  
Gari E, 1997, YEAST, V13, P837, DOI 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO