Involvement of flap endonuclease 1 in base excision DNA repair

被引:187
作者
Kim, K [1 ]
Biade, S [1 ]
Matsumoto, Y [1 ]
机构
[1] Fox Chase Canc Ctr, Dept Radiat Oncol, Philadelphia, PA 19111 USA
关键词
D O I
10.1074/jbc.273.15.8842
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Base excision repair can proceed in either one of two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)dependent pathway, Excision of an apurinic/apyrimidinic (AP) site by cutting the phosphate backbone on its 3' side following incision at its 5' side by AP endonuclease is a prerequisite to completion of these repair pathways. Using a reconstituted system with the proteins derived from Xenopus laevis, we found that flap endonuclease 1 (FEN1) was a factor responsible for the excision of a 5'-incised AP site in the PCNA-dependent pathway. In this pathway, DNA synthesis was not required for the action of FEN1 in the presence of PCNA and a replication factor C-containing fraction. The polymerase beta-dependent pathway could also use FEN1 for excision of the synthetic AP sites, which were not susceptible to beta-elimination. In this pathway, FEN1 was functional without PCNA and replication factor C but required the DNA synthesis, which led to a flap structure formation.
引用
收藏
页码:8842 / 8848
页数:7
相关论文
共 41 条
  • [1] Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA
    Biade, S
    Sobol, RW
    Wilson, SH
    Matsumoto, Y
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (02) : 898 - 902
  • [2] p21(Cip1/Waf1) disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex
    Chen, JJ
    Chen, S
    Saha, P
    Dutta, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (21) : 11597 - 11602
  • [3] Human RAD2 homolog 1 5'- to 3'-exo/endonuclease can efficiently excise a displaced DNA fragment containing a 5'-terminal abasic lesion by endonuclease activity
    DeMott, MS
    Shen, BH
    Park, MS
    Bambara, RA
    Zigman, S
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (47) : 30068 - 30076
  • [4] GENERATION OF SINGLE-NUCLEOTIDE REPAIR PATCHES FOLLOWING EXCISION OF URACIL RESIDUES FROM DNA
    DIANOV, G
    PRICE, A
    LINDAHL, T
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (04) : 1605 - 1612
  • [5] Two pathways for base excision repair in mammalian cells
    Frosina, G
    Fortini, P
    Rossi, O
    Carrozzino, F
    Raspaglio, G
    Cox, LS
    Lane, DP
    Abbondandolo, A
    Dogliotti, E
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (16) : 9573 - 9578
  • [6] GUGGENHEIMER RA, 1984, J BIOL CHEM, V259, P7815
  • [7] HARLOW E, 1998, ANTIBODIES LAB MANUA, P53
  • [8] FUNCTIONAL DOMAINS WITHIN FEN-1 AND RAD2 DEFINE A FAMILY OF STRUCTURE-SPECIFIC ENDONUCLEASES - IMPLICATIONS FOR NUCLEOTIDE EXCISION-REPAIR
    HARRINGTON, JJ
    LIEBER, MR
    [J]. GENES & DEVELOPMENT, 1994, 8 (11) : 1344 - 1355
  • [9] DNA STRUCTURAL ELEMENTS REQUIRED FOR FEN-1 BINDING
    HARRINGTON, JJ
    LIEBER, MR
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) : 4503 - 4508
  • [10] THE CHARACTERIZATION OF A MAMMALIAN DNA STRUCTURE-SPECIFIC ENDONUCLEASE
    HARRINGTON, JJ
    LIEBER, MR
    [J]. EMBO JOURNAL, 1994, 13 (05) : 1235 - 1246