LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability

被引:93
作者
Luo, Jiayan [1 ]
Cheng, Liang [1 ]
Xia, Yongyao [1 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
hollow nanospheres; LiMn2O4; spinel; lithium-ion battery;
D O I
10.1016/j.elecom.2007.01.058
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-rich Li1.05Mn2O4 hollow nanospheres have been successfully prepared by air-calcining lithiated MnO2 precursor at a low temperature of 550 degrees C, which was synthesized by chemical lithiation of hollow MnO2 nanospheres with LiI at 70 degrees C for 12 h. The lithium-rich Li1.05Mn2O4 hollow nanospheres exhibit an excellent cycling stability and rate capability as a cathode material for rechargeable lithium batteries: it maintains 90% of its initial capacity after 500 cycles, and keeps 70% of the reversible capacity at 0.1 C rat, even at 15 C rate. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1404 / 1409
页数:6
相关论文
共 35 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]  
ARMSTRONG AR, 2006, ADV MATER, V16, P1133
[4]   Self-discharge of LiMn2O4/C Li-ion cells in their discharged state -: Understanding by means of three-electrode measurements [J].
Blyr, A ;
Sigala, C ;
Amatucci, G ;
Guyomard, D ;
Chabre, Y ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :194-209
[5]   Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J].
Cao, AM ;
Hu, JS ;
Liang, HP ;
Wan, LJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (28) :4391-4395
[6]   Preparation and characterization of LiMn2O4 spinel nanoparticles as cathode materials in secondary Li batteries [J].
Curtis, CJ ;
Wang, JX ;
Schulz, DL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A590-A598
[7]   Electrochemical insertion and extraction of lithium ion at uniform nanosized Li4/3Ti5/3O4 particles prepared by a spray pyrolysis method [J].
Doi, T ;
Iriyama, Y ;
Abe, T ;
Ogumi, Z .
CHEMISTRY OF MATERIALS, 2005, 17 (06) :1580-1582
[8]   Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications [J].
Gao, Y ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :100-114
[9]   Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes [J].
Han, SJ ;
Jang, BC ;
Kim, T ;
Oh, SM ;
Hyeon, T .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (11) :1845-1850
[10]   Preparation and characterization of LiMn2O4 nanorod by low heating solid state coordination method [J].
Huang, YD ;
Li, J ;
Jia, DZ .
JOURNAL OF NANOPARTICLE RESEARCH, 2004, 6 (05) :533-538