Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin

被引:215
作者
Miyazawa, Tomohisa [1 ]
Koso, Shuichi [1 ]
Kunimori, Kimio [1 ]
Tomishige, Keiichi [1 ]
机构
[1] Univ Tsukuba, Inst Mat Sci, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
glycerol; hydrogenolysis; ruthenium; ion-exchange resin; propanediol;
D O I
10.1016/j.apcata.2006.11.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The combination of Ru/C and Amberlyst ion-exchange resin is effective for the dehydration and hydrogenation (denoted as hydrogenolysis) of glycerol to 1,2-propanediol under mild reaction conditions (393 K). A Ru/C catalyst prepared by using active carbon with a low surface area (similar to 250 m(2)/g) showed better performance than that prepared by using active carbon with a high surface area. In addition, treatment of Ru/C catalysts prepared from Ru(NO)(NO3)(3) with Ar flowing at the appropriate temperature enhanced the performance compared to that of the commercially available Ru/C catalysts. This temperature treatment can be influenced by the decomposition of Ru precursor salt and aggregation of Ru metal particles. In addition, the degradation reaction as a side-reaction to C1 and C2 compounds of glycerol hydrogenolysis was more structure-sensitive than the hydrogenolysis reaction, and the selectivity of hydrogenolysis was lower on smaller Ru particles. The combination of Ru/C with the Amberlyst resin enhanced the turnover frequency of 1,2-propanediol formation drastically, and this indicates that 1,2-propanediol can be formed mainly by dehydration of glycerol to acetol catalyzed by Amberlyst and subsequent hydrogenation of acetol to 1,2-propanediol catalyzed by Ru/C. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 251
页数:8
相关论文
共 24 条
[1]  
Anderson J.R., 1975, Structure of metallic catalysts, P295
[2]   Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor [J].
Asadullah, M ;
Ito, S ;
Kunimori, K ;
Yamada, M ;
Tomishige, K .
JOURNAL OF CATALYSIS, 2002, 208 (02) :255-259
[3]   Chemical and electrochemical characterization of porous carbon materials [J].
Bleda-Martinez, M. J. ;
Lozano-Castello, D. ;
Morallon, E. ;
Cazorla-Amoros, D. ;
Linares-Solano, A. .
CARBON, 2006, 44 (13) :2642-2651
[4]   Glycerol hydrogenolysis on heterogeneous catalysts [J].
Chaminand, J ;
Djakovitch, L ;
Gallezot, P ;
Marion, P ;
Pinel, C ;
Rosier, C .
GREEN CHEMISTRY, 2004, 6 (08) :359-361
[5]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967
[6]   Low-pressure hydrogenolysis of glycerol to propylene glycol [J].
Dasari, MA ;
Kiatsimkul, PP ;
Sutterlin, WR ;
Suppes, GJ .
APPLIED CATALYSIS A-GENERAL, 2005, 281 (1-2) :225-231
[7]   Renewable hydrogen from ethanol by autothermal reforming [J].
Deluga, GA ;
Salge, JR ;
Schmidt, LD ;
Verykios, XE .
SCIENCE, 2004, 303 (5660) :993-997
[8]   Biorefineries: Current status, challenges, and future direction [J].
Fernando, Sandun ;
Adhikari, Sushil ;
Chandrapal, Chauda ;
Murali, Naveen .
ENERGY & FUELS, 2006, 20 (04) :1727-1737
[9]   Modification of the surface chemistry of activated carbons [J].
Figueiredo, JL ;
Pereira, MFR ;
Freitas, MMA ;
Orfao, JJM .
CARBON, 1999, 37 (09) :1379-1389
[10]   New diol processes: 1,3-propanediol and 1,4-butanediol [J].
Haas, T ;
Jaeger, B ;
Weber, R ;
Mitchell, SF ;
King, CF .
APPLIED CATALYSIS A-GENERAL, 2005, 280 (01) :83-88