Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure

被引:179
作者
Andersson, J
Erck, RA
Erdemir, A
机构
[1] Argonne Natl Lab, Energy Technol Div, Argonne, IL 60439 USA
[2] Angstrom Lab, Tribomat Grp, SE-75121 Uppsala, Sweden
关键词
diamondlike carbon; water vapor pressures; hydrogenated carbon film;
D O I
10.1016/S0257-8972(02)00617-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we investigated the frictional behavior of both hydrogenated and hydrogen-free diamondlike carbon (DLC) films in high vacuum (10(-6) Pa) at room temperature. Water was also introduced into the vacuum chamber to elucidate its effects on DLC film tribology. The hydrogen-free DLC (also referred to as tetrahedral amorphous carbon, or ta-C) was produced by an arc-PVD process, and the highly hydrogenated DLC was produced by plasma-enhanced chemical-vapor deposition. Tribological measurements of these films were made with a pin-on-disc machine with coated steel balls and coated steel discs in matched pairs under a I N load. The ball/disk pairs were rotated at sliding speeds in the range of 0.025-0.075 m/s. In vacuum, the steady-state friction coefficient of ta-C was of the order of 0.6 and the wear was severe, whereas for the highly hydrogenated film, friction was below 0.01, and in an optical microscope no wear could be detected. Adding water vapor to the sliding ta-C system in a vacuum chamber caused friction to decrease monotonically from 0.6 to approximate to0.07. In contrast, adding water vapor to the sliding DLC system caused the friction to increase linearly with pressure from 0.01 to 0.07. The results illustrate the importance of taking into account environmental conditions, especially the presence of water, when DLC films are being considered for a given application. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:535 / 540
页数:6
相关论文
共 17 条
[1]   FRICTION OF DIAMOND, GRAPHITE, AND CARBON AND THE INFLUENCE OF SURFACE FILMS [J].
BOWDEN, FP ;
YOUNG, JE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 208 (1095) :444-455
[2]   FRICTION OF CLEAN CRYSTAL SURFACES [J].
BOWDEN, FP ;
HANWELL, AE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 295 (1442) :233-&
[3]   Diamond-like carbon-based functionally gradient coatings for space tribology [J].
Donnet, C ;
Fontaine, J ;
Le Mogne, T ;
Belin, M ;
Héau, C ;
Terrat, JP ;
Vaux, F ;
Pont, G .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :548-554
[4]   Friction control of diamond-like carbon coatings [J].
Donnet, C ;
Grill, A .
SURFACE & COATINGS TECHNOLOGY, 1997, 94-5 (1-3) :456-462
[5]   The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings [J].
Donnet, C. ;
Le Mogne, T. ;
Ponsonnet, L. ;
Belin, M. ;
Grill, A. ;
Patel, V. ;
Jahnes, C. .
TRIBOLOGY LETTERS, 1998, 4 (3-4) :259-265
[6]   A TRIBOLOGICAL INVESTIGATION OF THE GRAPHITE-TO-DIAMOND-LIKE BEHAVIOR OF AMORPHOUS-CARBON FILMS ION-BEAM DEPOSITED ON CERAMIC SUBSTRATES [J].
ERDEMIR, A ;
SWITALA, M ;
WEI, R ;
WILBUR, P .
SURFACE & COATINGS TECHNOLOGY, 1991, 50 (01) :17-23
[7]   The role of hydrogen in tribological properties of diamond-like carbon films [J].
Erdemir, A .
SURFACE & COATINGS TECHNOLOGY, 2001, 146 :292-297
[8]   Effect of source gas chemistry on tribological performance of diamond-like carbon films [J].
Erdemir, A ;
Eryilmaz, OL ;
Nilufer, IB ;
Fenske, GR .
DIAMOND AND RELATED MATERIALS, 2000, 9 (3-6) :632-637
[9]   Synthesis of diamondlike carbon films with superlow friction and wear properties [J].
Erdemir, A ;
Eryilmaz, OL ;
Fenske, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2000, 18 (04) :1987-1992
[10]   THE EFFECT OF ENVIRONMENT ON THE TRIBOLOGICAL PROPERTIES OF POLYCRYSTALLINE DIAMOND FILMS [J].
GARDOS, MN ;
SORIANO, BL .
JOURNAL OF MATERIALS RESEARCH, 1990, 5 (11) :2599-2609