Classical interaction model for the water molecule

被引:14
作者
Baranyai, Andras [1 ]
Bartok, Albert [1 ]
机构
[1] Eotvos Lorand Univ, Dept Theoret Chem, H-1518 Budapest 112, Hungary
基金
匈牙利科学研究基金会;
关键词
D O I
10.1063/1.2730510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The authors propose a new classical model for the water molecule. The geometry of the molecule is built on the rigid TIP5P model and has the experimental gas phase dipole moment of water created by four equal point charges. The model preserves its rigidity but the size of the charges increases or decreases following the electric field created by the rest of the molecules. The polarization is expressed by an electric field dependent nonlinear polarization function. The increasing dipole of the molecule slightly increases the size of the water molecule expressed by the oxygen-centered sigma parameter of the Lennard-Jones interaction. After refining the adjustable parameters, the authors performed Monte Carlo simulations to check the ability of the new model in the ice, liquid, and gas phases. They determined the density and internal energy of several ice polymorphs, liquid water, and gaseous water and calculated the heat capacity, the isothermal compressibility, the isobar heat expansion coefficients, and the dielectric constant of ambient water. They also determined the pair-correlation functions of ambient water and calculated the energy of the water dimer. The accuracy of theirs results was satisfactory. (C) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 42 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   A potential model for the study of ices and amorphous water:: TIP4P/Ice -: art. no. 234511 [J].
Abascal, JLF ;
Sanz, E ;
Fernández, RG ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (23)
[3]  
Allen M. P., 2009, Computer Simulation of Liquids
[4]   Electron distribution in water [J].
Badyal, YS ;
Saboungi, ML ;
Price, DL ;
Shastri, SD ;
Haeffner, DR ;
Soper, AK .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (21) :9206-9208
[5]   Limitations of the rigid planar nonpolarizable models of water -: art. no. 074507 [J].
Baranyai, A ;
Bartók, A ;
Chialvo, AA .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (07)
[6]   Computer simulation of the 13 crystalline phases of ice -: art. no. 054502 [J].
Baranyai, A ;
Bartók, A ;
Chialvo, AA .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (05)
[7]   Testing the adequacy of simple water models at the opposite ends of the phase diagram [J].
Baranyai, Andras ;
Bartok, Albert ;
Chialvo, Ariel A. .
JOURNAL OF MOLECULAR LIQUIDS, 2007, 134 (1-3) :94-98
[8]   Molecular multipole moments of water molecules in ice Ih [J].
Batista, ER ;
Xantheas, SS ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11) :4546-4551
[9]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[10]   PARAMETERIZING A POLARIZABLE INTERMOLECULAR POTENTIAL FOR WATER [J].
BRODHOLT, J ;
SAMPOLI, M ;
VALLAURI, R .
MOLECULAR PHYSICS, 1995, 86 (01) :149-158