New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes

被引:64
作者
Edwards, T. M. [1 ]
Rickard, N. S. [1 ]
机构
[1] Monash Univ, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia
关键词
nitric oxide; guanylate cyclase; ADP ribosylation; cyclic nucleotide-gated ion channels; large conductance calcium-activated potassium channels; ryanodine receptor calcium release channel; peroxynitrite;
D O I
10.1016/j.neubiorev.2006.11.001
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Nitric oxide (NO) has been well established as a molecule necessary for memory consolidation. Interestingly, the majority of research has focused on only a single mechanism through which NO acts, namely the up-regulation of guanylate cyclase (GC). However, since NO and NO-derived reactive nitrogen species are capable of interacting with a broad array of enzymes, ion channels and receptors, a singular focus on GC appears short-sighted. Although NO inhibits the action of a number of molecules there are four, in addition to GC, which are up-regulated by the direct presence of NO, or NO-derived radicals, and implicated in memory processing. They are: cyclic nucleotide-gated channels; large conductance calcium-activated potassium channels; ryanodine receptor calcium release (RyR) channels; and the enzyme mono(ADP-ribosyl) transferase. This review presents evidence that not only are these four molecules worthy of investigation as GC-independent mechanisms through which NO may act, but that behavioural evidence already exists suggesting a relationship between NO and the RyR channel. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 137 条
[1]   Molecular psychology: Roles for the ERK MAP kinase cascade in memory [J].
Adams, JP ;
Sweatt, JD .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :135-163
[2]   Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation [J].
Aghdasi, B ;
Reid, MB ;
Hamilton, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25462-25467
[3]   Direct actions of nitric oxide on rat neurohypophysial K+ channels [J].
Ahern, GP ;
Hsu, SF ;
Jackson, MB .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 520 (01) :165-176
[4]   RETINAL GANGLION-CELLS EXPRESS A CGMP-GATED CATION CONDUCTANCE ACTIVATABLE BY NITRIC-OXIDE DONORS [J].
AHMAD, I ;
LEINDERSZUFALL, T ;
KOCSIS, JD ;
SHEPHERD, GM ;
ZUFALL, F ;
BARNSTABLE, CJ .
NEURON, 1994, 12 (01) :155-165
[5]   CALCIUM-MEDIATED REDUCTION OF IONIC CURRENTS - A BIOPHYSICAL MEMORY TRACE [J].
ALKON, DL .
SCIENCE, 1984, 226 (4678) :1037-1045
[6]   EFFECTS OF HYPOXIA ON MEMORY CONSOLIDATION - IMPLICATIONS FOR A MULTISTAGE MODEL OF MEMORY [J].
ALLWEIS, C ;
GIBBS, ME ;
NG, KT ;
HODGE, RJ .
BEHAVIOURAL BRAIN RESEARCH, 1984, 11 (02) :117-121
[7]   ACTIVITY-DEPENDENT LONG-TERM ENHANCEMENT OF TRANSMITTER RELEASE BY PRESYNAPTIC 3',5'-CYCLIC GMP IN CULTURED HIPPOCAMPAL-NEURONS [J].
ARANCIO, O ;
KANDEL, ER ;
HAWKINS, RD .
NATURE, 1995, 376 (6535) :74-80
[8]   Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation [J].
Arancio, O ;
Antonova, I ;
Gambaryan, S ;
Lohmann, SM ;
Wood, JS ;
Lawrence, DS ;
Hawkins, RD .
JOURNAL OF NEUROSCIENCE, 2001, 21 (01) :143-149
[9]   NITRIC-OXIDE ACTIVATES GUANYLATE CYCLASE AND INCREASES GUANOSINE 3'-5'-CYCLIC MONOPHOSPHATE LEVELS IN VARIOUS TISSUE PREPARATIONS [J].
ARNOLD, WP ;
MITTAL, CK ;
KATSUKI, S ;
MURAD, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (08) :3203-3207
[10]   NITRIC-OXIDE BINDING TO FERROUS NATIVE HORSE HEART CYTOCHROME-C AND TO ITS CARBOXYMETHYLATED DERIVATIVE - A SPECTROSCOPIC AND THERMODYNAMIC STUDY [J].
ASCENZI, P ;
COLETTA, M ;
SANTUCCI, R ;
POLIZIO, F ;
DESIDERI, A .
JOURNAL OF INORGANIC BIOCHEMISTRY, 1994, 53 (04) :273-280