Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment

被引:87
作者
Nowinski, Nicole S. [1 ]
Taneva, Lina [2 ]
Trumbore, Susan E. [1 ]
Welker, Jeffrey M. [2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[2] Univ Alaska Anchorage, Environm & Nat Resources Inst, Anchorage, AK 99501 USA
[3] Univ Alaska Anchorage, Dept Biol, Anchorage, AK 99508 USA
基金
美国国家科学基金会;
关键词
Permafrost; Arctic; Tundra; Carbon cycling; Radiocarbon; SIMULATED ENVIRONMENTAL-CHANGE; ARCTIC POLAR SEMIDESERT; CLIMATE-CHANGE; NITROGEN MINERALIZATION; CARBON STORAGE; CO2; FLUX; SUMMER TEMPERATURE; DRYAS-OCTOPETALA; FIELD RESPONSES; TUNDRA;
D O I
10.1007/s00442-009-1556-x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2-3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (a dagger C-14) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. a dagger C-14 signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45-55 cm thaw depth), while CO2 from the ambient snow areas was similar to 100 years old (30-cm thaw depth). Heterotrophic respiration a dagger C-14 signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from < 50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere.
引用
收藏
页码:785 / 792
页数:8
相关论文
共 60 条
[1]   Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland [J].
Aerts, R. ;
Cornelissen, J. H. C. ;
van Logtestijn, R. S. P. ;
Callaghan, T. V. .
OECOLOGIA, 2007, 151 (01) :132-139
[2]   Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils [J].
Bockheim, J. G. .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2007, 71 (04) :1335-1342
[3]   Recognition of cryoturbation for classifying permafrost-affected soils [J].
Bockheim, JG ;
Tarnocai, C .
GEODERMA, 1998, 81 (3-4) :281-293
[4]  
Borner AP, 2008, ARCT ANTARCT ALP RES, V40, P27, DOI 10.1657/1523-0430(06-099)[BORNER]2.0.CO
[5]  
2
[6]  
Broecker W.S., 1982, Tracers in the sea, Palisades, V690
[7]  
Callaghan TV, 2004, AMBIO, V33, P386, DOI 10.1639/0044-7447(2004)033[0386:KFAES]2.0.CO
[8]  
2
[9]   RESPONSES OF ARCTIC TUNDRA TO EXPERIMENTAL AND OBSERVED CHANGES IN CLIMATE [J].
CHAPIN, FS ;
SHAVER, GR ;
GIBLIN, AE ;
NADELHOFFER, KJ ;
LAUNDRE, JA .
ECOLOGY, 1995, 76 (03) :694-711
[10]   Role of land-surface changes in Arctic summer warming [J].
Chapin, FS ;
Sturm, M ;
Serreze, MC ;
McFadden, JP ;
Key, JR ;
Lloyd, AH ;
McGuire, AD ;
Rupp, TS ;
Lynch, AH ;
Schimel, JP ;
Beringer, J ;
Chapman, WL ;
Epstein, HE ;
Euskirchen, ES ;
Hinzman, LD ;
Jia, G ;
Ping, CL ;
Tape, KD ;
Thompson, CDC ;
Walker, DA ;
Welker, JM .
SCIENCE, 2005, 310 (5748) :657-660