Maintenance of fork integrity at damaged DNA and natural pause sites

被引:113
作者
Tourriere, Hélène [1 ]
Pasero, Philippe [1 ]
机构
[1] CNRS, Inst Human Genet, UPR 1142, F-34396 Montpellier 5, France
关键词
replication fork; genomic instability; S-phase checkpoints;
D O I
10.1016/j.dnarep.2007.02.004
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
S phase is a period of great vulnerability for the genome of eukaryotic cells. Many complicated processes are undertaken during this critical phase of the cell cycle, including the complete unwinding and the duplication of enormously complex DNA molecules. During this process, replication forks frequently encounter obstacles that impede their progression. Arrested forks are unstable structures that have to be stabilized and restarted in order to prevent the formation of double-strand breaks and/or unscheduled homologous recombination. To this aim, cells have evolved complex surveillance mechanisms sensing DNA damage and replication stress. The past decade has seen a dramatic advance in our understanding of how these regulatory pathways act in response to exogenous replication stress. However, the mechanism by which fork integrity is maintained at natural replication-impeding sequences remains obscure. Here, we discuss recent findings about how checkpoint-dependent and independent mechanisms cooperate to prevent genomic instability at stalled forks, both in normal S phase and in the presence of exogenous genotoxic stress. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:900 / 913
页数:14
相关论文
共 166 条
[1]   Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast [J].
Admire, A ;
Shanks, L ;
Danzl, N ;
Wang, M ;
Weier, U ;
Stevens, W ;
Hunt, E ;
Weinert, T .
GENES & DEVELOPMENT, 2006, 20 (02) :159-173
[2]   Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast [J].
Ahn, JS ;
Osman, F ;
Whitby, MC .
EMBO JOURNAL, 2005, 24 (11) :2011-2023
[3]   Mrc1 transduces signals of DNA replication stress to activate Rad53 [J].
Alcasabas, AA ;
Osborn, AJ ;
Bachant, J ;
Hu, FH ;
Werler, PJH ;
Bousset, K ;
Furuya, K ;
Diffley, JFX ;
Carr, AM ;
Elledge, SJ .
NATURE CELL BIOLOGY, 2001, 3 (11) :958-965
[4]   Fission yeast switches mating type by a replication-recombination coupled process [J].
Arcangioli, B ;
de Lahondès, R .
EMBO JOURNAL, 2000, 19 (06) :1389-1396
[5]   The S-cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes [J].
Azvolinsky, Anna ;
Dunaway, Stephen ;
Torres, Jorge Z. ;
Bessler, Jessica B. ;
Zakian, Virginia A. .
GENES & DEVELOPMENT, 2006, 20 (22) :3104-3116
[6]   ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation [J].
Ball, HL ;
Myers, JS ;
Cortez, D .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (05) :2372-2381
[7]   Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model [J].
Barbour, L ;
Xiao, W .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2003, 532 (1-2) :137-155
[8]   DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis [J].
Bartkova, J ;
Horejsi, Z ;
Koed, K ;
Krämer, A ;
Tort, F ;
Zieger, K ;
Guldberg, P ;
Sehested, M ;
Nesland, JM ;
Lukas, C ;
Orntoft, T ;
Lukas, J ;
Bartek, J .
NATURE, 2005, 434 (7035) :864-870
[9]   YEAST ORIGIN RECOGNITION COMPLEX FUNCTIONS IN TRANSCRIPTION SILENCING AND DNA-REPLICATION [J].
BELL, SP ;
KOBAYASHI, R ;
STILLMAN, B .
SCIENCE, 1993, 262 (5141) :1844-1849
[10]   Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance [J].
Bjergbaek, L ;
Cobb, JA ;
Tsai-Pflugfelder, M ;
Gasser, SM .
EMBO JOURNAL, 2005, 24 (02) :405-417