Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum

被引:103
作者
Casey, John R.
Lomas, Michael W.
Mandecki, Joanna
Walker, Donald E.
机构
[1] Coll Charleston, Dept Biol, Charleston, SC 29424 USA
[2] Bermuda Inst Ocean Sci, Phytoplankton Ecol Lab, St Georges GE01, Bermuda
[3] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
关键词
CENTRAL ATLANTIC-OCEAN; TIME-SERIES STATION; NORTH-ATLANTIC; SYNECHOCOCCUS CELLS; UPTAKE RATES; NITROGEN; PHYTOPLANKTON; CYANOBACTERIA; ECOTYPES; GROWTH;
D O I
10.1029/2006GL028725
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Prochlorococcus is ubiquitous in tropical oceans, but its biogeochemical role is not well constrained. For example, cultured Prochlorococcus clones do not grow on NO3-, but these cultured clones may only represent 10 - 15% of the natural population variance resulting in a biased biogeochemical role. We report NO3-, NO2-, NH4+ and urea uptake rates for flow-cytometrically sorted Sargasso Sea Prochlorococcus populations. Reduced nitrogen substrates accounted for most, 90 - 95%, of the measured nitrogen uptake, but these populations also directly assimilate a significant fraction of NO3-, 5 - 10%; a finding in stark contrast to conclusions drawn from culture studies. The observed population-specific NO3- uptake rates compare favorably with both net Prochlorococcus population growth rates and diapycnal NO3- fluxes. We hypothesize that while reduced nitrogen supports overall high growth rates, balancing high grazing mortality, the net seasonal Prochlorococcus population growth is supported by NO3- assimilation and that Prochlorococcus contributes to new production in the oligotrophic ocean.
引用
收藏
页数:5
相关论文
共 31 条
[1]  
Agawin NSR, 2005, VIE MILIEU, V55, P165
[2]   Viability and niche segregation of Prochlorococcus and Synechococcus cells across the Central Atlantic Ocean [J].
Agusti, S .
AQUATIC MICROBIAL ECOLOGY, 2004, 36 (01) :53-59
[3]   Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies [J].
Ahlgren, NA ;
Rocap, G ;
Chisholm, SW .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (03) :441-454
[4]   Plankton functional type modelling: running before we can walk? [J].
Anderson, TR .
JOURNAL OF PLANKTON RESEARCH, 2005, 27 (11) :1073-1081
[5]   Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal variability and an intermediate water hydrothermal plume [J].
Boyle, EA ;
Bergquist, BA ;
Kayser, RA ;
Mahowald, N .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (04) :933-952
[6]   Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome [J].
Dufresne, A ;
Salanoubat, M ;
Partensky, F ;
Artiguenave, F ;
Axmann, IM ;
Barbe, V ;
Duprat, S ;
Galperin, MY ;
Koonin, EV ;
Le Gall, F ;
Makarova, KS ;
Ostrowski, M ;
Oztas, S ;
Robert, C ;
Rogozin, IB ;
Scanlan, DJ ;
de Marsac, NT ;
Weissenbach, J ;
Wincker, P ;
Wolf, YI ;
Hess, WR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :10020-10025
[7]   NUTRIENT LIMITATION IN SEA - DYNAMICS IDENTIFICATION AND SIGNIFICANCE [J].
DUGDALE, RC .
LIMNOLOGY AND OCEANOGRAPHY, 1967, 12 (04) :685-&
[8]   UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY [J].
DUGDALE, RC ;
GOERING, JJ .
LIMNOLOGY AND OCEANOGRAPHY, 1967, 12 (02) :196-&
[9]   Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea [J].
DuRand, MD ;
Olson, RJ ;
Chisholm, SW .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2001, 48 (8-9) :1983-2003
[10]   PARTICULATE ORGANIC-MATTER FLUX AND PLANKTONIC NEW PRODUCTION IN THE DEEP OCEAN [J].
EPPLEY, RW ;
PETERSON, BJ .
NATURE, 1979, 282 (5740) :677-680