Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling

被引:74
作者
Farina, D
Macaluso, A
Ferguson, RA
De Vito, G
机构
[1] Univ Aalborg, Ctr Sensory Motor Interact, DK-9100 Aalborg, Denmark
[2] Politecn Torino, Dipartimento Elettron, Lab Ingn Sistema Neuromuscolare, I-10129 Turin, Italy
[3] Univ Strathclyde, Dept Appl Physiol, Glasgow G13 1PP, Lanark, Scotland
关键词
dynamic exercise; surface electromyogram; electrode arrays;
D O I
10.1152/japplphysiol.00606.2004
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Muscle fiber conduction velocity (MFCV) provides indications on motor unit recruitment strategies due to the relation between conduction velocity and fiber diameter. The aim of this study was to investigate MFCV of thigh muscles during cycling at varying power outputs, pedal rates, and external forces. Twelve healthy male participants aged between 19 and 30 yr cycled on an electronically braked ergometer at 45, 60, 90, and 120 rpm. For each pedal rate, subjects performed two exercise intensities, one at an external power output corresponding to the previously determined lactate threshold (100% LT) and the other at half of this power output (50% LT). Surface electromyogram signals were detected during cycling from vastus lateralis and medialis muscles with linear adhesive arrays of eight electrodes. In both muscles, MFCV was higher at 100% LT compared with 50% LT for all average pedal rates except 120 rpm (mean +/- SE, 4.98 +/- 0.19 vs. 4.49 +/- 0.18 m/ s; P < 0.001). In all conditions, MFVC increased with increasing instantaneous knee angular speed (from 4.14 +/- 0.16 to 5.08 +/- 0.13 m/ s in the range of instantaneous angular speeds investigated; P < 0.001). When MFCV was compared at the same external force production (i.e., 90 rpm/100% LT vs. 45 rpm/50% LT, and 120 rpm/100% LT vs. 60 rpm/50% LT), MFCV was higher at the faster pedal rate (5.02 +/- 0.17 vs. 4.64 +/- 0.12 m/s, and 4.92 +/- 0.19 vs. 4.49 +/- 0.11 m/s, respectively; P < 0.05) due to the increase in inertial power required to accelerate the limbs. It was concluded that, during repetitive dynamic movements, MFCV increases with the external force developed, instantaneous knee angular speed, and average pedal rate, indicating progressive recruitment of large, high conduction velocity motor units with increasing muscle force.
引用
收藏
页码:2035 / 2041
页数:7
相关论文
共 38 条
[1]   MUSCLE-FIBER CONDUCTION-VELOCITY IN MOTOR UNITS OF THE HUMAN ANTERIOR TIBIAL MUSCLE - A NEW SIZE PRINCIPLE PARAMETER [J].
ANDREASSEN, S ;
ARENDTNIELSEN, L .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 391 :561-571
[2]  
Arendt-Nielsen L., 1984, J PHYSL, V353, p6P
[3]   THE INFLUENCE OF MUSCLE LENGTH ON MUSCLE-FIBER CONDUCTION-VELOCITY AND DEVELOPMENT OF MUSCLE FATIGUE [J].
ARENDTNIELSEN, L ;
GANTCHEV, N ;
SINKJAER, T .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1992, 85 (03) :166-172
[4]   Time-frequency analysis of surface myoelectric signals during athletic movement - Studying muscle activation and fatigue during propulsion of a racing wheelchair [J].
Balestra, G ;
Frassinelli, S ;
Knaflitz, M ;
Molinari, F .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (06) :106-115
[5]  
BAZZUCCHI I, IN PRESS MUSCLE NERV
[6]   IMPROVED DETECTION OF LACTATE THRESHOLD DURING EXERCISE USING A LOG-LOG TRANSFORMATION [J].
BEAVER, WL ;
WASSERMAN, K ;
WHIPP, BJ .
JOURNAL OF APPLIED PHYSIOLOGY, 1985, 59 (06) :1936-1940
[7]  
BEELEN A, 1993, NEUROMUSCULAR FATIGU, P93
[8]   Clinician's view: Dynamic EMG [J].
Benedetti, MG .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2001, 20 (06) :33-34
[9]   Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions [J].
Farina, D ;
Pozzo, M ;
Merlo, E ;
Bottin, A ;
Merletti, R .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (08) :1383-1393
[10]   Methods for estimating muscle fibre conduction velocity from surface electromyographic signals [J].
Farina, D ;
Merletti, R .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2004, 42 (04) :432-445