Resolution effects and enslaved finite-difference schemes for a double gyre, shallow-water model

被引:12
作者
Jones, DA [1 ]
Poje, AC
Margolin, LG
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Los Alamos Natl Lab, IGPP, Los Alamos, NM 87545 USA
关键词
D O I
10.1007/s001620050044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study numerical solutions of the reduced-gravity shallow-water equation on a beta plane, subjected to a sinusoidally varying wind forcing leading to the formation of a double gyre circulation. As expected the dynamics of the numerical solutions are highly dependent on the grid resolution and the given numerical algorithm. In particular, the statistics of the solutions are critically dependent on the scheme's ability to resolve the Rossby deformation radius. We present a method, applicable to any finite-difference scheme, which effectively increases the spatial resolution of the given algorithm without changing its temporal stability or memory requirements. This enslaving method makes use of properties of the governing equations in the absence of time derivatives to reduce the overall truncation error. By examining statistical measures of stochastic solutions at resolutions near the Rossby radius, we show that the enslaved schemes are capable of reproducing statistics of standard schemes computed at twice the resolution.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 33 条
[1]  
Arakawa A., 1977, Methods in Computational Physics: Advances in Research and Applications, V17, P173, DOI [10.1016/B978-0-12-460817-7.50009-4, DOI 10.1016/B978-0-12-460817-7.50009-4]
[2]   KLTOOL: A tool to analyze spatiotemporal complexity [J].
Armbruster, Dieter ;
Heiland, Randy ;
Kostelich, Eric J. .
CHAOS, 1994, 4 (02) :421-424
[3]   A WIND-DRIVEN ISOPYCNIC COORDINATE MODEL OF THE NORTH AND EQUATORIAL ATLANTIC-OCEAN .1. MODEL DEVELOPMENT AND SUPPORTING EXPERIMENTS [J].
BLECK, R ;
SMITH, LT .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1990, 95 (C3) :3273-3285
[5]   NONLINEAR GALERKIN METHOD IN THE FINITE-DIFFERENCE CASE AND WAVELET-LIKE INCREMENTAL UNKNOWNS [J].
CHEN, M ;
TEMAM, R .
NUMERISCHE MATHEMATIK, 1993, 64 (03) :271-294
[6]   MESH EFFECTS FOR ROSSBY WAVES [J].
DUKOWICZ, JK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 119 (01) :188-194
[7]   IMPLICIT FREE-SURFACE METHOD FOR THE BRYAN-COX-SEMTNER OCEAN MODEL [J].
DUKOWICZ, JK ;
SMITH, RD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1994, 99 (C4) :7991-8014
[8]  
FIGUEROA HA, 1994, J PHYS OCEANOGR, V24, P371, DOI 10.1175/1520-0485(1994)024<0371:ERVEDI>2.0.CO
[9]  
2
[10]  
FIGUEROA HA, 1994, J PHYS OCEANOGR, V24, P387, DOI 10.1175/1520-0485(1994)024<0387:ERVEDI>2.0.CO