Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus

被引:123
作者
de Vrije, T.
Mars, A. E.
Budde, M. A. W.
Lai, M. H.
Dijkema, C.
de Waard, P.
Claassen, P. A. M.
机构
[1] Wageningen UR, Agr Technol & Food Sci Grp, NL-6700 AA Wageningen, Netherlands
[2] Wageningen UR, Wageningen NMR Ctr, NL-6703 HA Wageningen, Netherlands
关键词
GLUCOSE FERMENTATION; EMBDEN-MEYERHOF; ENERGY; BIOTECHNOLOGY; METABOLISM; BACTERIA; ACETATE; BIOMASS; ARCHAEA;
D O I
10.1007/s00253-006-0783-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
NMR analysis of C-13-labelling patterns showed that the Embden-Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol H-2 per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol g(-1) h(-1) and 20 mmol 1(-1) h(-1). An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield.
引用
收藏
页码:1358 / 1367
页数:10
相关论文
共 25 条
[1]  
BAUCHOP T, 1960, J GEN MICROBIOL, V23, P457
[2]   Hydrogen biotechnology: Progress and prospects [J].
Benemann, J .
NATURE BIOTECHNOLOGY, 1996, 14 (09) :1101-1103
[3]   Utilisation of biomass for the supply of energy carriers [J].
Claassen, PAM ;
van Lier, JB ;
Contreras, AML ;
van Niel, EWJ ;
Sijtsma, L ;
Stams, AJM ;
de Vries, SS ;
Weusthuis, RA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 52 (06) :741-755
[4]  
CLAASSEN PAM, 2002, BIOM EN IND CLIM PRO, P529
[5]   Non-thermal production of pure hydrogen from biomass: HYVOLUTION [J].
Claassen, Pietemel A. M. ;
de Vrije, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) :1416-1423
[6]  
de Vrije T, 2003, BIOMETHANE BIOHYDROG, P103, DOI DOI 10.1002/bit.10174
[7]   IHEC-2005: Biohydrogen [J].
Hagen, Wilfred R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) :1413-1415
[8]   Fundamentals of the fermentative production of hydrogen [J].
Hallenbeck, PC .
WATER SCIENCE AND TECHNOLOGY, 2005, 52 (1-2) :21-29
[9]  
Kádár Z, 2004, APPL BIOCHEM BIOTECH, V113, P497
[10]  
Kengen SWM, 1996, FEMS MICROBIOL REV, V18, P119