Use of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase to facilitate crystallization and analysis of a pseudo-16-mer DNA molecule containing G-A mispairs

被引:30
作者
Coté, ML
Yohannan, SJ
Georgiadis, MM
机构
[1] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem, Piscataway, NJ 08854 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2000年 / 56卷
关键词
D O I
10.1107/S0907444900008246
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Complexation with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase offers a novel method of obtaining crystal structures of nucleic acid duplexes, which can be phased by molecular replacement. This method is somewhat similar to the method of using a monoclonal antibody Fab fragment complexed to the molecule of interest in order to obtain crystals suitable for X-ray crystallographic analysis. Here a novel DNA structure including two G-A mispairs in a pseudo-hexadecamer determined at 2.3 Angstrom resolution in a complex with the N-terminal fragment is reported. This structure has an asymmetric unit consisting of the protein molecule bound to the blunt end of a DNA 6/10-mer, which is composed of a six-base strand (5'-CTCGTG-3') and a ten-base strand (3'-GAGCACGGCA-5'). The 6/10-mer is thus composed of a six-base-pair duplex with a four-base single-stranded overhang. In the crystal structure, the bases of the overhang are reciprocally paired (symmetry element -x - 1, -y, z), yielding a doubly nicked pseudo-hexadecamer primarily B-form DNA molecule, which has some interesting A-like structural features. The pairing between the single strands results in two standard (G-C) Watson-Crick pairs and two G-A mispairs. The structural DNA model can accommodate either a standard syn or a standard anti conformation for the 5'-terminal adenine of the ten-base strand of the DNA based on analysis of simulated-annealing omit maps. Although the DNA model here includes nicks in the phosphodiester backbone, modeling of an intact phosphodiester backbone results in a very similar DNA model and indicates that the structure is biologically relevant.
引用
收藏
页码:1120 / 1131
页数:12
相关论文
共 48 条
[1]   A curved RNA helix incorporating an internal loop with G center dot A and A center dot A non-Watson-Crick base pairing [J].
Baeyens, KJ ;
DeBondt, HL ;
Pardi, A ;
Holbrook, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12851-12855
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   CRYSTAL-STRUCTURE AND STABILITY OF A DNA DUPLEX CONTAINING A(ANTI).G(SYN) BASE-PAIRS [J].
BROWN, T ;
LEONARD, GA ;
BOOTH, ED ;
CHAMBERS, J .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 207 (02) :455-457
[4]   MOLECULAR-STRUCTURE OF THE G-A BASE PAIR IN DNA AND ITS IMPLICATIONS FOR THE MECHANISM OF TRANSVERSION MUTATIONS [J].
BROWN, T ;
HUNTER, WN ;
KNEALE, G ;
KENNARD, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (08) :2402-2406
[5]   DIFFERENT BASE BASE MISPAIRS ARE CORRECTED WITH DIFFERENT EFFICIENCIES AND SPECIFICITIES IN MONKEY KIDNEY-CELLS [J].
BROWN, TC ;
JIRICNY, J .
CELL, 1988, 54 (05) :705-711
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]   BASE-PAIRING GEOMETRY IN GA MISMATCHES DEPENDS ENTIRELY ON THE NEIGHBORING SEQUENCE [J].
CHENG, JW ;
CHOU, SH ;
REID, BR .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (04) :1037-1041
[8]   POSSIBLE CONFORMATIONS OF DOUBLE-HELICAL POLYNUCLEOTIDES CONTAINING INCORRECT BASE-PAIRS [J].
CHUPRINA, VP ;
POLTEV, VI .
NUCLEIC ACIDS RESEARCH, 1983, 11 (15) :5205-5222
[9]  
*CIOS TECHN, 1993, INSIGHT 2 US GUID
[10]  
Clark AD, 1995, METHOD ENZYMOL, V262, P171, DOI 10.1016/0076-6879(95)62017-6