Torsional profiles of protonated and metal-coordinated 2,2′-bipyridine

被引:15
作者
Grummt, UW
Erhardt, S
机构
[1] Univ Jena, Chem Geowissenschaftliche Fak, Inst Chem Phys, D-07743 Jena, Germany
[2] Univ Marburg, Fachbereich Chem, D-35032 Marburg, Germany
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2004年 / 685卷 / 1-3期
关键词
2,2 '-bipyridine; protonated; metal coordinated; rotational barriers; ab initio calculations; DFT-calculation;
D O I
10.1016/j.theochem.2004.07.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rotational profiles of both the mono and di-protonated 2,2'-bipyridinium cations were calculated with ab initio Hartree Fock and density functional theoretical methods. The most stable form of the singly protonated bipyridine is the planar cisoid conformation with a weak, bent and strongly asymmetric NHN hydrogen brigde. The transoid conformer is predicted to exhibit the maximal charge delocalization in the coplanar arrangement, however, it is twisted due to sterical hindrance. The di-protonated species is most stable in a twisted (about 40degrees) transoid conformation with a very shallow potential minimum of the twisted cisoid form. Rotational profiles of transition metal complexes [bipyZn(H2O)(n)](2+) with n=2-4 and [bipyRu(CO)(4)](2+) leading from the monodentate transoid to the stable bidentate bipy complex are also calculated with density functional theory methods. There is no potential energy barrier between the coordinated cisoid and transoid bipy complexes with [bipyZn(H2O)n](2+) and a small barrier is found for [bipyRu(CO)(4)](2+). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 32 条
[1]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[2]   Luminescent and redox-active polynuclear transition metal complexes [J].
Balzani, V ;
Juris, A ;
Venturi, M ;
Campagna, S ;
Serroni, S .
CHEMICAL REVIEWS, 1996, 96 (02) :759-833
[3]  
Balzani V., 1978, TOP CURR CHEM, P1, DOI [10.1007/BFb0048835, DOI 10.1007/BFB0048835]
[4]  
BECKE AD, 1986, PHYS REV B, V33, P8822
[5]   HYDRATION OF ZINC IONS - A COMPARISON WITH MAGNESIUM AND BERYLLIUM IONS [J].
BOCK, CW ;
KATZ, AK ;
GLUSKER, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (13) :3754-3763
[6]   Synthetic, structural and vibrational spectroscopic studies in bismuth(III) halide N,N′-aromatic bidentate base systems.: I.: Large-cation (2,2′-bipyridinium and 1,10-phenanthrolinium) salts of polyhalobismuthate(III) ions [J].
Bowmaker, GA ;
Junk, PC ;
Lee, AM ;
Skelton, BW ;
White, AH .
AUSTRALIAN JOURNAL OF CHEMISTRY, 1998, 51 (04) :293-309
[7]   Evaluation of the accuracy of PM3, AM1 and MNDO/d as applied to zinc compounds [J].
Bräuer, M ;
Kunert, M ;
Dinjus, E ;
Klussmann, M ;
Döring, M ;
Görls, H ;
Anders, E .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 505 :289-301
[8]   INVERSION OF EXCITED STATES OF TRANSITION-METAL COMPLEXES [J].
CROSBY, GA ;
WATTS, RJ ;
CARSTENS, DH .
SCIENCE, 1970, 170 (3963) :1195-&
[9]   Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: Applications to structural and energetic analysis [J].
Elstner, M ;
Cui, Q ;
Munih, P ;
Kaxiras, E ;
Frauenheim, T ;
Karplus, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (05) :565-581
[10]  
Frisch M.J., 2016, Gaussian 16 Revision C. 01. 2016, V01