Can synchronous spawning be predicted from environmental parameters?: A case study of the lugworm Arenicola marina

被引:41
作者
Watson, GJ
Williams, ME
Bentley, MG
机构
[1] Univ Portsmouth, Inst Marine Sci, Portsmouth PO4 9LY, Hants, England
[2] Univ St Andrews, Sch Biol, Gatty Marine Lab, St Andrews KY16 8LB, Fife, Scotland
[3] Univ Newcastle Upon Tyne, Dept Marine Sci & Coastal Management, Fac Agr & Biol Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
D O I
10.1007/s002270000283
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The annual epidemic spawning period of a Scottish population of Arenicola marina (L.) has been recorded over a period of 13 yr. This population spawns between mid-October and mid-November in a discrete spawning event over a period of 4 to 5 d. Endocrine manipulation experiments showed that spawning is induced in females only if sufficient titres of PMH (prostomial maturation hormone) are present in the prostomia. These levels are attained during the 2 to 3 wk Drier to the natural spawning date. The East Sands, St. Andrews population always spawns during periods of spring tides regardless of tidal amplitude or whether they are full- or new-moon tides. Meteorological data, including sea-temperature data were collected for each year, and correlation of the environmental data with spawning time was attempted. Correlation of spawning times with weather patterns showed that mean daily air pressures were significantly higher during the spawning period than from September to November as a whole. Evidence also suggests that a reduction in sea temperature is required prior to spawning. A significant moderate negative correlation was found between May to July air temperatures and spawning date, suggesting that higher May to July temperatures may induce early spawning. Daily rainfall and wind speed were also lower during the spawning period, but not significantly so. These results indicate that air pressure (or changes therein) may act as a final spawning cue, and the advantages of this are discussed in relation to fertilization success. A model of the interplay between environmental parameters and the endocrine mechanisms controlling the induction of spawning is proposed. Higher than average summer temperatures may advance gametogenesis to bring the population into a state of maturity (full-size oocytes, well-developed sperm morulae), and may also advance spawning time. Once the population has completed gametogenesis, a drop in sea temperature is then required to trigger an increase in endocrine titres within the prostomium, without which spawning cannot be induced by prostomial injection. The population spawns on spring tides; however a lack of clement weather coinciding with the spring tide will result in population-wide spawning being aborted, as in 1996. Clement weather (high pressure, low rainfall and wind speed) in conjunction with spring tides permits spawning to proceed to completion.
引用
收藏
页码:1003 / 1017
页数:15
相关论文
共 60 条
[1]  
ALINO PM, 1989, B MAR SCI, V45, P697
[2]  
AUCKLAND MF, 1993, THESIS U ST ANDREWS
[3]   PREDICTABLE AND UNPREDICTABLE SPAWNING EVENTS - IN-SITU BEHAVIORAL-DATA FROM FREE-SPAWNING CORAL-REEF INVERTEBRATES [J].
BABCOCK, R ;
MUNDY, C ;
KEESING, J ;
OLIVER, J .
INVERTEBRATE REPRODUCTION & DEVELOPMENT, 1992, 22 (1-3) :213-228
[4]   SYNCHRONOUS SPAWNINGS OF 105 SCLERACTINIAN CORAL SPECIES ON THE GREAT-BARRIER-REEF [J].
BABCOCK, RC ;
BULL, GD ;
HARRISON, PL ;
HEYWARD, AJ ;
OLIVER, JK ;
WALLACE, CC ;
WILLIS, BL .
MARINE BIOLOGY, 1986, 90 (03) :379-394
[5]  
BENTLEY MG, 1992, OCEANOGR MAR BIOL, V30, P443
[6]  
Bishop J., 1974, Proceedings of the Louisiana Academy of Sciences, V37, P60
[7]  
CADMAN PS, 2000, UNPUB TEMPERATURE CO
[9]   Mass spawning by green algae on coral reefs [J].
Clifton, KE .
SCIENCE, 1997, 275 (5303) :1116-1118
[10]  
CREASER EP, 1982, FISH B-NOAA, V80, P735