Optimal prediction of underresolved dynamics

被引:75
作者
Chorin, AJ [1 ]
Kast, AP [1 ]
Kupferman, R [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1073/pnas.95.8.4094
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A method is presented for computing the average solution of problems that are too complicated for adequate resolution, but where information about the statistics of the solution is available. The method involves computing average derivatives by interpolation based on linear regression, and an updating of a measure constrained by the available crude information. Examples are given.
引用
收藏
页码:4094 / 4098
页数:5
相关论文
共 7 条
[1]  
BARENBLATT GI, 1998, P S APPL MATH, V54, P1
[2]  
CHORIN AJ, 1973, MATH COMPUT, V27, P1, DOI 10.1090/S0025-5718-1973-0329205-7
[3]  
Kleinert H., 1989, GAUGE FIELDS CONDENS
[4]  
LESIEUR M, 1996, COMPUTATIONAL FLUID
[5]   CONDITIONAL AVERAGING PROCEDURE FOR THE ELIMINATION OF THE SMALL-SCALE MODES FROM INCOMPRESSIBLE FLUID TURBULENCE AT HIGH REYNOLDS-NUMBERS [J].
MCCOMB, WD ;
WATT, AG .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3281-3284
[6]  
Papoulis A., 1991, PROBABILITY RANDOM V
[7]   Fractal model for coarse-grained nonlinear partial differential equations [J].
Scotti, A ;
Meneveau, C .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :867-870