Gene selection using a two-level hierarchical Bayesian model

被引:112
作者
Bae, K [1 ]
Mallick, BK [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
D O I
10.1093/bioinformatics/bth419
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fundamental problem of gene selection via cDNA data is to identify which genes are differentially expressed across different kinds of tissue samples (e.g. normal and cancer). cDNA data contain large number of variables (genes) and usually the sample size is relatively small so the selection process can be unstable. Therefore, models which incorporate sparsity in terms of variables (genes) are desirable for this kind of problem. This paper proposes a two-level hierarchical Bayesian model for variable selection which assumes a prior that favors sparseness. We adopt a Markov chain Monte Carlo (MCMC) based computation technique to simulate the parameters from the posteriors. The method is applied to leukemia data from a previous study and a published dataset on breast cancer.
引用
收藏
页码:3423 / 3430
页数:8
相关论文
共 38 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
Brotherick I, 1998, CYTOMETRY, V32, P301, DOI 10.1002/(SICI)1097-0320(19980801)32:4<301::AID-CYTO7>3.3.CO
[3]  
2-R
[4]   Kernel methods: a survey of current techniques [J].
Campbell, C .
NEUROCOMPUTING, 2002, 48 :63-84
[5]  
Devore J., 1997, Statistics: the exploration and analysis of data
[6]  
DUDOIT S, 2000, 578 UC BERKL
[7]  
Figueiredo MAT, 2002, ADV NEUR IN, V14, P697
[8]  
GELFAND A, 1990, J AM STAT ASSOC, V88, P881
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]  
GRANT G, 2002, C CRIT ASS MICR DAT, P37