Defining the polar vortex edge from an N2O:potential temperature correlation -: art. no. 8268

被引:22
作者
Greenblatt, JB
Jost, HJ
Loewenstein, M
Podolske, JR
Bui, TP
Hurst, DF
Elkins, JW
Herman, RL
Webster, CR
Schauffler, SM
Atlas, EL
Newman, PA
Lait, LR
Müller, M
Engel, A
Schmidt, U
机构
[1] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[2] Bay Area Environm Res Inst, San Francisco, CA USA
[3] NOAA, Climate Monitoring & Diagnost Lab, Boulder, CO 80305 USA
[4] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[6] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[7] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[8] Univ Frankfurt, Inst Meteorol & Geophys, D-60054 Frankfurt, Germany
来源
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES | 2002年 / 107卷 / D20期
关键词
N2O; polar vortex; potential temperature; vortex edge; stratosphere; Arctic;
D O I
10.1029/2001JD000575
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A prerequisite to studying phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESEO 2000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by more than 400 km and omit the identification of small, extravortex filaments within the vortex.
引用
收藏
页数:9
相关论文
共 36 条
[1]   MONITORING THE VERTICAL STRUCTURE OF THE ARCTIC POLAR VORTEX OVER NORTHERN SCANDINAVIA DURING EASOE - REGULAR N2O PROFILE OBSERVATIONS [J].
BAUER, R ;
ENGEL, A ;
FRANKEN, H ;
KLEIN, E ;
KULESSA, G ;
SCHILLER, C ;
SCHMIDT, U ;
BORCHERS, R ;
LEE, J .
GEOPHYSICAL RESEARCH LETTERS, 1994, 21 (13) :1211-1214
[2]  
BUTCHART N, 1986, J ATMOS SCI, V43, P1319, DOI 10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO
[3]  
2
[4]   Multiannual simulations with a three-dimensional chemical transport model [J].
Chipperfield, MP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D1) :1781-1805
[5]   Airborne gas chromatograph for in situ measurements of long-lived species in the upper troposphere and lower stratosphere [J].
Elkins, JW ;
Fahey, DW ;
Gilligan, JM ;
Dutton, GS ;
Baring, TJ ;
Volk, CM ;
Dunn, RE ;
Myers, RC ;
Montzka, SA ;
Wamsley, PR ;
Hayden, AH ;
Butler, JH ;
Thompson, TM ;
Swanson, TH ;
Dlugokencky, EJ ;
Novelli, PC ;
Hurst, DF ;
Lobert, JM ;
Ciciora, SJ ;
McLaughlin, RJ ;
Thompson, TL ;
Winkler, RH ;
Fraser, PJ ;
Steele, LP ;
Lucarelli, MP .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (04) :347-350
[6]  
GAINES SE, 1992, J ATMOS OCEAN TECH, V9, P210, DOI 10.1175/1520-0426(1992)009<0210:COTNEM>2.0.CO
[7]  
2
[8]   Observational evidence for the role of denitrification in Arctic stratospheric ozone loss [J].
Gao, RS ;
Richard, EC ;
Popp, PJ ;
Toon, GC ;
Hurst, DF ;
Newman, PA ;
Holecek, JC ;
Northway, MJ ;
Fahey, DW ;
Danilin, MY ;
Sen, B ;
Aikin, K ;
Romashkin, PA ;
Elkins, JW ;
Webster, CR ;
Schauffler, SM ;
Greenblatt, JB ;
McElroy, CT ;
Lait, LR ;
Bui, TP ;
Baumgardner, D .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (15) :2879-2882
[9]  
GREENBLATT JB, 2002, IN PRESS J GEOPHYS R, V107
[10]   POTENTIAL VORTICITY AND MIXING IN THE SOUTH POLAR VORTEX DURING SPRING [J].
HARTMANN, DL ;
CHAN, KR ;
GARY, BL ;
SCHOEBERL, MR ;
NEWMAN, PA ;
MARTIN, RL ;
LOEWENSTEIN, M ;
PODOLSKE, JR ;
STRAHAN, SE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1989, 94 (D9) :11625-11640