Males absent on the first (MOF): from flies to humans

被引:109
作者
Rea, S. [1 ]
Xouri, G. [1 ]
Akhtar, A. [1 ]
机构
[1] European Mol Biol Lab, Gene Express Programme, D-69117 Heidelberg, Germany
关键词
MOF; MSL; histone acetyltransferase; H4K16; DNA damage; cancer;
D O I
10.1038/sj.onc.1210607
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone modi. cations such as acetylation, methylation and phosphorylation have been implicated in fundamental cellular processes such as epigenetic regulation of gene expression, organization of chromatin structure, chromosome segregation, DNA replication and DNA repair. Males absent on the first ( MOF) is responsible for acetylating histone H4 at lysine 16 ( H4K16) and is a key component of the MSL complex required for dosage compensation in Drosophila. The human ortholog of MOF ( hMOF) has the same substrate specific city and recent purification of the human and Drosophila MOF complexes showed that these complexes were also highly conserved through evolution. Several studies have shown that loss of hMOF in mammalian cells leads to a number of different phenotypes; a G(2)/M cell cycle arrest, nuclear morphological defects, spontaneous chromosomal aberrations, reduced transcription of certain genes and an impaired DNA repair response upon ionizing irradiation. Moreover, hMOF is involved in ATM activation in response to DNA damage and acetylation of p53 by hMOF influences the cell's decision to undergo apoptosis instead of a cell cycle arrest. These data, highlighting hMOF as an important component of many cellular processes, as well as links between hMOF and cancer will be discussed.
引用
收藏
页码:5385 / 5394
页数:10
相关论文
共 98 条
[1]   Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila [J].
Akhtar, A ;
Becker, PB .
MOLECULAR CELL, 2000, 5 (02) :367-375
[2]   HISTONE ACETYLATION IN INSECT CHROMOSOMES [J].
ALLFREY, VG ;
POGO, BGT ;
LITTAU, VC ;
GERSHEY, EL ;
MIRSKY, AE .
SCIENCE, 1968, 159 (3812) :314-&
[3]   Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Lowary, PT ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (04) :977-985
[4]   DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J].
Bakkenist, CJ ;
Kastan, MB .
NATURE, 2003, 421 (6922) :499-506
[5]   Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair [J].
Bird, AW ;
Yu, DY ;
Pray-Grant, MG ;
Qiu, QF ;
Harmon, KE ;
Megee, PC ;
Grant, PA ;
Smith, MM ;
Christman, MF .
NATURE, 2002, 419 (6905) :411-415
[6]   ACETYLATED HISTONE H4 ON THE MALE X-CHROMOSOME IS ASSOCIATED WITH DOSAGE COMPENSATION IN DROSOPHILA [J].
BONE, JR ;
LAVENDER, J ;
RICHMAN, R ;
PALMER, MJ ;
TURNER, BM ;
KURODA, MI .
GENES & DEVELOPMENT, 1994, 8 (01) :96-117
[7]   The translocation t(8;l6)(p11, p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB binding protein [J].
Borrow, J ;
Stanton, VP ;
Andresen, JM ;
Becher, R ;
Behm, FG ;
Chaganti, RSK ;
Civin, CI ;
Disteche, C ;
Dube, I ;
Frischauf, AM ;
Horsman, D ;
Mitelman, F ;
Volinia, S ;
Watmore, AE ;
Housman, DE .
NATURE GENETICS, 1996, 14 (01) :33-41
[8]   Transcriptional regulation of the human MIP-1α promoter by RUNX1 and MOZ [J].
Bristow, CAP ;
Shore, P .
NUCLEIC ACIDS RESEARCH, 2003, 31 (11) :2735-2744
[9]   Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation [J].
Brooks, CL ;
Gu, W .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :164-171
[10]   Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1 [J].
Burke, TW ;
Cook, JG ;
Asano, M ;
Nevins, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (18) :15397-15408