Developmental changes in the modulation of synaptic glycine receptors by ethanol

被引:41
作者
Eggers, ED [1 ]
O'Brien, JA [1 ]
Berger, AJ [1 ]
机构
[1] Univ Washington, Sch Med, Dept Physiol & Biophys, Seattle, WA 98195 USA
关键词
D O I
10.1152/jn.2000.84.5.2409
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
During postnatal motoneuron development, the glycine receptor (GlyR) alpha subunit changes from alpha2 (fetal) to alpha1 (adult). To study the effect this change has on ethanol potentiation of GlyR currents in hypoglossal motoneurons (HMs), we placed neurons into two groups: neonate [postnatal day 1 to 3 (P1-3)], primarily expressing a2, and juvenile (P9-13), primarily expressing alpha1. We found that glycinergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in neonate HMs are less sensitive to ethanol than in juveniles. Thirty millimolar ethanol increased the amplitude of juvenile mIPSCs but did not significantly change neonatal mIPSCs. However, 100 mM ethanol increased the amplitudes of both neonate and juvenile mIPSCs. There was a significant difference between age groups in the average ethanol-induced increase in mIPSC amplitude for 10, 30, 50, and 100 mM ethanol. In both age groups ethanol increased the frequency of glycinergic mIPSCs, but there was no difference in the amount of frequency increase between age groups. Ethanol (100 mM) also potentiated evoked IPSCs (eIPSCs) in both neonate and juvenile HMs. As we observed for mIPSCs, 30 mM ethanol increased the amplitude of juvenile eIPSCs, but had no significant effect on eIPSCs in neonate HMs. Ethanol also potentiated currents induced by exogenously applied glycine in both neonate and juvenile HMs. These results suggest that ethanol directly modulates the GlyR. To investigate possible mechanisms for this, we analyzed the time course of mIPSCs and single-channel conductance of the GlyR in the presence and absence of ethanol. We found that ethanol did not significantly change the time course of mIPSCs. We also determined that ethanol did not significantly change the single-channel conductance of synaptic GlyRs, as estimated by nonstationary noise analysis of mIPSCs. We conclude that the adult form of the native GlyR is more sensitive to ethanol than the fetal form. Further, enhancement of GlyR currents involves mechanisms other than an increase in the single-channel conductance or factors that alter the decay kinetics.
引用
收藏
页码:2409 / 2416
页数:8
相关论文
共 35 条
[1]  
Aguayo LG, 1996, J PHARMACOL EXP THER, V279, P1116
[2]  
AGUAYO LG, 1994, J PHARMACOL EXP THER, V270, P61
[3]  
BONORA M, 1984, AM REV RESPIR DIS, V130, P156
[4]   ETHANOL POTENTIATES GABA-INDUCED AND GLYCINE-INDUCED CHLORIDE CURRENTS IN CHICK SPINAL-CORD NEURONS [J].
CELENTANO, JJ ;
GIBBS, TT ;
FARB, DH .
BRAIN RESEARCH, 1988, 455 (02) :377-380
[5]   Ethanol reduces neuronal excitability and excitatory synaptic transmission in the developing rat spinal cord [J].
Cheng, G ;
Gao, BX ;
Verbny, Y ;
Ziskind-Conhaim, L .
BRAIN RESEARCH, 1999, 845 (02) :224-231
[6]   ALGORITHMS FOR DETECTION AND MEASUREMENT OF SPONTANEOUS EVENTS [J].
COCHRAN, SL .
JOURNAL OF NEUROSCIENCE METHODS, 1993, 50 (01) :105-121
[7]   Effects of ethanol on ion channels [J].
Crews, Fulton T. ;
Morrow, A. Leslie ;
Criswell, Hugh ;
Breese, George .
INTERNATIONAL REVIEW OF NEUROBIOLOGY, VOL 39, 1996, 39 :283-367
[8]   EFFECTS OF ETHANOL ON RESPIRATORY ACTIVITY IN THE NEONATAL RAT BRAIN-STEM-SPINAL CORD PREPARATION [J].
DIPASQUALE, E ;
MONTEAU, R ;
HILAIRE, G ;
ISCOE, S .
BRAIN RESEARCH, 1995, 695 (02) :271-274
[9]  
Eggers E. D., 1999, Society for Neuroscience Abstracts, V25, P1248
[10]   EFFECT OF ETHANOL ON GAMMA-AMINOBUTYRIC-ACID AND GLYCINE RECEPTOR-COUPLED CL- FLUXES IN RAT-BRAIN SYNAPTONEUROSOMES [J].
ENGBLOM, AC ;
AKERMAN, KEO .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (02) :384-390