Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions

被引:115
作者
Holzinger, R
Sandoval-Soto, L
Rottenberger, S
Crutzen, PJ
Kesselmeier, J
机构
[1] Max Planck Inst Chem, Dept Air Chem, D-55128 Mainz, Germany
[2] Max Planck Inst Chem, Dept Biogeochem, D-55128 Mainz, Germany
关键词
D O I
10.1029/2000JD900296
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Volatile organic compound (VOC) emissions of the Mediterranean helm oak (Quercus ilex L.) were investigated using a fast Proton Transfer Reaction Mass Spectrometry (PTR-MS) instrument for analysis. This technique is able to measure compounds with a proton affinity higher than water with a high time resolution of 1 s per compound. Hence nearly all VOCs can be detected on-line. We could clearly identify the emission of methanol, acetaldehyde, ethanol, acetone, acetic acid, isoprene, monoterpenes, toluene, and C-10-benzenes. Some other species could be tentatively denominated. Among these are the masses 67 (cyclo pentadiene), mass 71 (tentatively attributed to methyl vinyl ketone (MVK) and metacrolein (MACR)), 73 (attributed to methyl ethyl ketone (MEK)), 85 (C6H12 or hexanol), and 95 (vinylfuran or phenol). The emissions of all these compounds (identified as well as nonidentified) together represent 99% of all masses detected and account for a carbon loss of 0.7-2.9% of the net photosynthesis. Of special interest was a change in the emission behavior under changing environmental conditions such as flooding or fast light/dark changes. Flooding of the root system caused an increase of several VOCs between 60 and 2000%, dominated by the emission of ethanol and acetaldehyde, which can be explained by the well described production of ethanol under anoxic conditions of the root system and the recently described subsequent transport and partial oxidation to acetaldehyde within the green leaves. However, ethanol emissions were dominant. Additionally, bursts of acetaldehyde with lower ethanol emission were also found under fast light/dark changes. These bursts are not understood.
引用
收藏
页码:20573 / 20579
页数:7
相关论文
共 39 条
[1]   A comparative study on carbohydrate reserves and ethanolic fermentation in the roots of two wetland and non-wetland species after commencement of hypoxia [J].
Albrecht, G ;
Biemelt, S .
PHYSIOLOGIA PLANTARUM, 1998, 104 (01) :81-86
[2]   Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry [J].
Andreae, MO ;
Crutzen, PJ .
SCIENCE, 1997, 276 (5315) :1052-1058
[3]   EVALUATED BIMOLECULAR ION-MOLECULE GAS-PHASE KINETICS OF POSITIVE-IONS FOR USE IN MODELING PLANETARY-ATMOSPHERES, COMETARY COMAE, AND INTERSTELLAR CLOUDS [J].
ANICICH, VG .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1993, 22 (06) :1469-1569
[4]   GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC-COMPOUNDS - A REVIEW [J].
ATKINSON, R .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1990, 24 (01) :1-41
[5]   Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions - Applications of light and temperature algorithms [J].
Bertin, N ;
Staudt, M ;
Hansen, U ;
Seufert, G ;
Ciccioli, P ;
Foster, P ;
Fugit, JL ;
Torres, L .
ATMOSPHERIC ENVIRONMENT, 1997, 31 :135-144
[6]   Gas-phase terpene oxidation products: a review [J].
Calogirou, A ;
Larsen, BR ;
Kotzias, D .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (09) :1423-1439
[7]   cis-pinic acid, a possible precursor for organic aerosol formation from ozonolysis of α-pinene [J].
Christoffersen, TS ;
Hjorth, J ;
Horie, O ;
Jensen, NR ;
Kotzias, D ;
Molander, LL ;
Neeb, P ;
Ruppert, L ;
Winterhalter, R ;
Virkkula, A ;
Wirtz, K ;
Larsen, BR .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (10) :1657-1661
[8]   High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam [J].
Crutzen, PJ ;
Williams, J ;
Pöschl, U ;
Hoor, P ;
Fischer, H ;
Warneke, C ;
Holzinger, R ;
Hansel, A ;
Lindinger, W ;
Scheeren, B ;
Lelieveld, J .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (08) :1161-1165
[9]   Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process [J].
de Gouw, JA ;
Howard, CJ ;
Custer, TG ;
Fall, R .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (07) :811-814
[10]   Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry [J].
Fall, R ;
Karl, T ;
Hansel, A ;
Jordan, A ;
Lindinger, W .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D13) :15963-15974