Multifeature energy optimization framework and parameter adjustment-based nonrigid point set registration

被引:11
作者
Dan, Tingting [1 ,2 ,3 ]
Yang, Yang [1 ,2 ,3 ]
Xing, Lin [1 ]
Yang, Kun [1 ,2 ]
Zhang, Yaying [1 ,3 ]
Ong, Sim Heng [4 ]
Song, Fei [1 ,3 ]
Gao, Xueyan [1 ,2 ,3 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Engn Res Ctr GIS Technol Western China, Minist Educ China, Kunming, Yunnan, Peoples R China
[3] Yunnan Normal Univ, Lab Pattern Recognit & Artificial Intelligence, Kunming, Yunnan, Peoples R China
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
nonrigid point set registration; multiple features; parameter adjustment; spatial transformation; MIXTURE MODEL; ALGORITHM; TRANSFORMATION; APPROXIMATION; 2D;
D O I
10.1117/1.JRS.12.035006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nonrigid point set registration is a key technology in the field of remote sensing image registration, which is widely used in military and civil fields such as natural disaster damage assessment, agricultural and urban land-use planning, environmental quality monitoring, and ground target identification. We present a multifeature energy optimization framework and parameter adjustment-based nonrigid point set registration that has three contributions: (1) an energy optimization framework is designed to freely combine multiple features for estimating correspondences between two point sets, (2) the thin-plate spline and Gauss radial basis function transformation models can be optionally implemented for solving two-dimensional, three-dimensional, or higher-dimensional registration problems, and (3) the free parameters can be adjusted by the proposed three parameter adjustment approaches to yield higher registration accuracy in varied registration patterns. We test the performances of our method in contour point sets, sequence images, remote sensing images, medical images, and real images and compare with 10 state-of-the-art methods, where our method shows favorable performances in most scenarios. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:27
相关论文
共 59 条
[1]  
[Anonymous], P 7 CENTR EUR SEM CO
[2]  
[Anonymous], J SOFTWARE
[3]  
[Anonymous], SWARM EVOL COMPUT
[4]  
[Anonymous], IEEE INT C EL MEAS I
[5]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[6]   Shape matching and object recognition using shape contexts [J].
Belongie, S ;
Malik, J ;
Puzicha, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :509-522
[7]  
Caetano TS, 2007, IEEE I CONF COMP VIS, P86
[8]   Learning Graph Matching [J].
Caetano, Tiberio S. ;
McAuley, Julian J. ;
Cheng, Li ;
Le, Quoc V. ;
Smola, Alex J. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (06) :1048-1058
[9]   Robust local feature descriptor for multisource remote sensing image registration [J].
Chen, Shuhan ;
Li, Xiaorun ;
Yang, Han ;
Zhao, Liaoying .
JOURNAL OF APPLIED REMOTE SENSING, 2018, 12
[10]  
Chui H, 1999, LECT NOTES COMPUT SC, V1613, P168