Regulation of NF-κB2/p100 processing by its nuclear shuttling

被引:35
作者
Liao, GX [1 ]
Sun, SC [1 ]
机构
[1] Penn State Univ Hosp, Dept Microbiol & Immunol, Coll Med, Hershey, PA 17033 USA
关键词
NF-kappa B; p100; protein processing; nuclear localization signal; leptomycin B;
D O I
10.1038/sj.onc.1206761
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Processing of the NF-kappaB2 precursor protein p100 to generate p52 is an important step of NF-kappaB regulation. This proteolytic event is tightly regulated by sequences located at the C-terminal portion of p100. Constitutive processing of p100 occurs in certain lymphoma cells due to the loss of its C-terminal regulatory domain, although the underlying mechanisms remain unknown. We show here that the constitutive processing of C-terminal truncation mutants of p100 is associated with their active nuclear translocation. Deletion of the C-terminal death domain of p100 triggers a low, but significant, level of nuclear translocation and processing. Disruption of the ankyrin-repeat domain of p100 further enhances its nuclear shuttling activity, which is again associated with elevated level of processing. More importantly, mutation of the nuclear localization signal (NLS) of p100 abolishes its processing, and this defect can be rescued by fusion of a heterologous NLS to the amino- or carboxyl-terminus of the p100 mutant. These results suggest that nuclear shuttling is a mechanism regulating the processing of NF-kappaB2/p100.
引用
收藏
页码:4868 / 4874
页数:7
相关论文
共 37 条
[1]   The NF-kappa B and I kappa B proteins: New discoveries and insights [J].
Baldwin, AS .
ANNUAL REVIEW OF IMMUNOLOGY, 1996, 14 :649-683
[2]   Control of apoptosis by Rel/NF-κB transcription factors [J].
Barkett, M ;
Gilmore, TD .
ONCOGENE, 1999, 18 (49) :6910-6924
[3]   TPL-2 kinase regulates the proteolysis of the NF-κB-inhibitory protein NF-κB1 p105 [J].
Belich, MP ;
Salmerón, A ;
Johnston, LH ;
Ley, SC .
NATURE, 1999, 397 (6717) :363-368
[4]   Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4 [J].
Blondel, M ;
Galan, JM ;
Chi, Y ;
Lafourcade, C ;
Longaretti, C ;
Deshaies, RJ ;
Peter, M .
EMBO JOURNAL, 2000, 19 (22) :6085-6097
[5]   BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells [J].
Claudio, E ;
Brown, K ;
Park, S ;
Wang, HS ;
Siebenlist, U .
NATURE IMMUNOLOGY, 2002, 3 (10) :958-965
[6]   CD40 regulates the processing of NF-κB2 p100 to p52 [J].
Coope, HJ ;
Atkinson, PGP ;
Huhse, B ;
Belich, M ;
Janzen, J ;
Holman, MJ ;
Klaus, GGB ;
Johnston, LH ;
Ley, SC .
EMBO JOURNAL, 2002, 21 (20) :5375-5385
[7]   Pseudosubstrate regulation of the SCFβ-TrCP ubiquitin ligase by hnRNP-U [J].
Davis, M ;
Hatzubai, A ;
Andersen, JS ;
Ben-Shushan, E ;
Fisher, GZ ;
Yaron, A ;
Bauskin, A ;
Mercurio, F ;
Mann, M ;
Ben-Neriah, Y .
GENES & DEVELOPMENT, 2002, 16 (04) :439-451
[8]   The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways [J].
Dejardin, E ;
Droin, NM ;
Delhase, M ;
Haas, E ;
Cao, YX ;
Makris, C ;
Li, ZW ;
Karin, M ;
Ware, CF ;
Green, DR .
IMMUNITY, 2002, 17 (04) :525-535
[9]   GENERATION OF P50 SUBUNIT OF NF-KAPPA-B BY PROCESSING OF P105 THROUGH AN ATP-DEPENDENT PATHWAY [J].
FAN, CM ;
MANIATIS, T .
NATURE, 1991, 354 (6352) :395-398
[10]   THE DEATH DOMAIN - A MODULE SHARED BY PROTEINS WITH DIVERSE CELLULAR FUNCTIONS [J].
FEINSTEIN, E ;
KIMCHI, A ;
WALLACH, D ;
BOLDIN, M ;
VARFOLOMEEV, E .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (09) :342-344