Transcritical loss of synchronization in coupled chaotic systems

被引:18
作者
Popovych, O
Maistrenko, Y
Mosekilde, E
Pikovsky, A
Kurths, J
机构
[1] Univ Potsdam, Dept Phys, D-14415 Potsdam, Germany
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
关键词
D O I
10.1016/S0375-9601(00)00621-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The synchronization transition is described for a system of two asymmetrically coupled chaotic oscillators. Such a system can represent the two-cluster state in a large ensemble of globally coupled oscillators. It is shown that the transition can be typically mediated by a transcritical transversal bifurcation. The latter has a hard brunch that dominates the global dynamics, so that the synchronization transition is normally hard. For a particular example of coupled logistic maps a diversity of transition scenaria includes both local and global riddling. In the case of small non-identity of the interacting systems the riddling is shown to turn into an exterior or interior crisis. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:401 / 406
页数:6
相关论文
共 24 条
[1]  
Arnold VI., 1988, GRUNDLEHREN MATH WIS, Vsecond edn, DOI 10.1007/978-3-662-11832-0
[2]   Adaptive synchronization of chaos for secure communication [J].
Boccaletti, S ;
Farini, A ;
Arecchi, FT .
PHYSICAL REVIEW E, 1997, 55 (05) :4979-4981
[3]  
Cenys A, 1996, PHYS LETT A, V213, P259, DOI 10.1016/0375-9601(96)00126-0
[4]   Broken ergodicity and glassy behavior in a deterministic chaotic map [J].
Crisanti, A ;
Falcioni, M ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 76 (04) :612-615
[5]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[6]   PHASE LOCKING OF JOSEPHSON-JUNCTION SERIES ARRAYS [J].
HADLEY, P ;
BEASLEY, MR ;
WIESENFELD, K .
PHYSICAL REVIEW B, 1988, 38 (13) :8712-8719
[7]   Synchronization of spatiotemporal chaos and its applications [J].
Hu, G ;
Xiao, JH ;
Yang, JZ ;
Xie, FG ;
Qu, ZL .
PHYSICAL REVIEW E, 1997, 56 (03) :2738-2746
[8]  
Iooss G., 1990, Elementary Stability and Bifurcation Theory, V2nd
[9]   On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection [J].
Kaneko, K .
PHYSICA D, 1998, 124 (04) :322-344
[10]   GLOBALLY COUPLED CIRCLE MAPS [J].
KANEKO, K .
PHYSICA D, 1991, 54 (1-2) :5-19