Transgenic mosquitoes and malaria transmission

被引:49
作者
Christophides, GK [1 ]
机构
[1] European Mol Biol Lab, D-69117 Heidelberg, Germany
关键词
D O I
10.1111/j.1462-5822.2005.00495.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
As the malaria burden persists in most parts of the developing world, the concept of implementation of new strategies such as the use of genetically modified mosquitoes to control the disease continues to gain support. In Africa, which suffers most from malaria, mosquito vector populations are spread almost throughout the entire continent, and the parasite reservoir is big and continuously increasing. Moreover, malaria is transmitted by many species of anophelines with specific seasonal and geographical patterns. Therefore, a well designed, evolutionarily robust and publicly accepted plan aiming at population reduction or replacement is required. The task is twofold: to engineer mosquitoes with a genetic trait that confers resistance to malaria or causes population suppression; and, to drive the new trait through field populations. This review examines these two issues, and describes the groundwork that has been done towards understanding of the complex relation between the parasite and its vector.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 54 条
[1]  
Afanasiev B, 2000, CONTRIB MICROBIOL, V4, P33
[2]   Malaria control with genetically manipulated insect vectors [J].
Alphey, L ;
Beard, CB ;
Billingsley, P ;
Coetzee, M ;
Crisanti, A ;
Curtis, C ;
Eggleston, P ;
Godfray, C ;
Hemingway, J ;
Jacobs-Lorena, M ;
James, AA ;
Kafatos, FC ;
Mukwaya, LG ;
Paton, M ;
Powell, JR ;
Schneider, W ;
Scott, TW ;
Sina, B ;
Sinden, R ;
Sinkins, S ;
Spielman, A ;
Touré, Y ;
Collins, FH .
SCIENCE, 2002, 298 (5591) :119-121
[3]   Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission [J].
Ben Beard, C ;
Cordon-Rosales, C ;
Durvasula, RV .
ANNUAL REVIEW OF ENTOMOLOGY, 2002, 47 :123-141
[4]   The first releases of transgenic mosquitoes: an argument for the sterile insect technique [J].
Benedict, MQ ;
Robinson, AS .
TRENDS IN PARASITOLOGY, 2003, 19 (08) :349-355
[5]   Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite [J].
Billker, O ;
Dechamps, S ;
Tewari, R ;
Wenig, G ;
Franke-Fayard, B ;
Brinkmann, V .
CELL, 2004, 117 (04) :503-514
[6]   Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae [J].
Blandin, S ;
Shiao, SH ;
Moita, LF ;
Janse, CJ ;
Waters, AP ;
Kafatos, FC ;
Levashina, EA .
CELL, 2004, 116 (05) :661-670
[7]   Reverse genetics in the mosquito Anopheles gambiae:: targeted disruption of the Defensin gene [J].
Blandin, S ;
Moita, LF ;
Köcher, T ;
Wilm, M ;
Kafatos, FC ;
Levashina, EA .
EMBO REPORTS, 2002, 3 (09) :852-856
[8]  
Boete Christopher, 2002, Malaria Journal, V1, pUnpaginated
[9]  
Braig H.R., 2001, GENETICALLY ENG ORGA, P251
[10]   Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti [J].
Capurro, MD ;
Coleman, J ;
Beerntsen, BT ;
Myles, KM ;
Olson, KE ;
Rocha, E ;
Krettli, AU ;
James, AA .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2000, 62 (04) :427-433