Convergence rates of posterior distributions

被引:407
作者
Ghosal, S
Ghosh, JK
Van der Vaart, AW
机构
[1] Free Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] Indian Stat Inst, Stat & Math Unit, Kolkata 700035, W Bengal, India
关键词
infinite dimensional model; posterior distribution; rate of convergence; sieves; splines;
D O I
10.1214/aos/1016218228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinite-dimensional statistical models. We give general results on the rate of convergence of the posterior measure. These are applied to several examples, including priors on finite sieves, log-spline models, Dirichlet processes and interval censoring.
引用
收藏
页码:500 / 531
页数:32
相关论文
共 31 条
[1]  
[Anonymous], 1984, LECT NOTES MATH
[2]  
Barron A, 1999, ANN STAT, V27, P536
[3]   RATES OF CONVERGENCE FOR MINIMUM CONTRAST ESTIMATORS [J].
BIRGE, L ;
MASSART, P .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (1-2) :113-150
[4]   Minimum contrast estimators on sieves: exponential bounds and rates of convergence [J].
Birge, L ;
Massart, P .
BERNOULLI, 1998, 4 (03) :329-375
[5]  
BIRGE L., 1997, FESTSCHRIFT L LECAM, P55
[6]  
BIRGE L, 1983, Z WAHRSCH VERW GEBIE, V65, P131
[7]  
BIRGE L, 1984, PROBAB MATH STAT, V0003, P00259
[8]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[9]  
DIACONIS P, 1986, ANN STAT, V14, P1, DOI 10.1214/aos/1176349830
[10]  
Doob JL., 1949, COLLECTION CTR NATL, V13, P23