Transversal and lateral exciton energy transfer in grana thylakoids of spinach

被引:45
作者
Kirchhoff, H
Borinski, M
Lenhert, S
Chi, LF
Büchel, C
机构
[1] Inst Bot, D-48149 Munster, Germany
[2] Inst Phys, D-48149 Munster, Germany
[3] Max Planck Inst Biophys, D-60439 Frankfurt, Germany
关键词
D O I
10.1021/bi048473w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The excitation energy transfer between photosystem (PS) II complexes was studied in isolated grana disks and thylakoids using chlorophyll a fluorescence induction measurements in the presence of DCMU under stacked and destacked conditions. Destacking of grana was achieved using a sonication protocol in a buffer without MgCl2. The degree of stacking was controlled and quantified by atomic force microscopy and by the concomitant absorption changes. As expected from the literature, intact thylakoids showed a strong dependency of the connectivity of PSII centers, the F-m/F-o. ratio as well as the fraction of PSIIbeta centers on the MgCl2 concentration. In contrast, these parameters did not change in isolated grana disks. In particular, the connectivity remained constantly high irrespective of the degree of destacking. These differences were explained by the high protein density in grana disks, which hinders separation and mixing of proteins sufficiently to change energy transfer properties. Due to the occurrence of stroma lamella in intact thylakoids, intermixing of PSII and PSI is possible and allows for changes in F-m/F-o ratio as is the separation of LHCII from PSII, thus leading to an increase in the fraction of PSIIbeta. Even if mixing and separation of proteins are impaired in isolated grana disks, destacking should lead to a decrease in connectivity if transversal excitation energy transfer between two opposite membranes is significant. Because the connectivity is constant over all degrees of destacking employed, we conclude that the energy transfer in granas is mainly lateral.
引用
收藏
页码:14508 / 14516
页数:9
相关论文
共 61 条
[1]  
Albertsson P-A, 2000, RECENT RES DEV BIOEN, V1, P143
[2]   A quantitative model of the domain structure of the photosynthetic membrane [J].
Albertsson, PÅ .
TRENDS IN PLANT SCIENCE, 2001, 6 (08) :349-354
[3]   Molecular recognition in thylakoid structure and function [J].
Allen, JF ;
Forsberg, J .
TRENDS IN PLANT SCIENCE, 2001, 6 (07) :317-326
[4]   State transitions - a question of balance [J].
Allen, JF .
SCIENCE, 2003, 299 (5612) :1530-1532
[5]   Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective [J].
Anderson, JM .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1999, 26 (07) :625-639
[6]   A model for the topology of the chloroplast thylakoid membrane [J].
Arvidsson, PO ;
Sundby, C .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1999, 26 (07) :687-694
[7]   INFLUENCE OF SURFACE-CHARGES ON THYLAKOID STRUCTURE AND FUNCTION [J].
BARBER, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1982, 33 :261-295
[8]   MEMBRANE-SURFACE CHARGES AND POTENTIALS IN RELATION TO PHOTOSYNTHESIS [J].
BARBER, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 594 (04) :253-308
[9]   Evidence for long-range excitation energy migration in macroaggregates of the chlorophyll a/b light-harvesting antenna complexes [J].
Barzda, V ;
Garab, G ;
Gulbinas, V ;
Valkunas, L .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1996, 1273 (03) :231-236
[10]   Crystal structure of plant photosystem I [J].
Ben-Shem, A ;
Frolow, F ;
Nelson, N .
NATURE, 2003, 426 (6967) :630-635