Impulsive and varying injection in gamma-ray burst afterglows

被引:220
作者
Sari, R [1 ]
Mészáros, P
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Penn State Univ, Davey Lab 525, University Pk, PA 16802 USA
关键词
gamma rays : bursts; hydrodynamics; radiation mechanisms : nonthermal; shock waves;
D O I
10.1086/312689
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The standard model of gamma-ray burst afterglows is based on synchrotron radiation from a blast wave produced when the relativistic ejecta encounters the surrounding medium. We reanalyze the refreshed shock scenario, in which slower material catches up with the decelerating ejecta and reenergizes it. This energization can be done either continuously or in discrete episodes. We show that such a scenario has two important implications. First, there is an additional component coming from the reverse shock that goes into the energizing ejecta. This persists fur as long as the reenergization itself, which could extend for up to days or longer. We find that during this time the overall spectral peak is found at the characteristic frequency of the reverse shock. Second, if the injection is continuous, the dynamics will be different from that in constant energy evolution and will cause a slower decline of the observed fluxes. A simple test of the continuously refreshed scenario is that it predicts a spectral maximum in the far-infrared or millimeter range after a few days.
引用
收藏
页码:L33 / L37
页数:5
相关论文
共 17 条
[1]   Observation of contemporaneous optical radiation from a γ-ray burst [J].
Akerlof, C ;
Balsano, R ;
Barthelmy, S ;
Bloch, J ;
Butterworth, P ;
Casperson, D ;
Cline, T ;
Fletcher, S ;
Frontera, F ;
Gisler, G ;
Heise, J ;
Hills, J ;
Kehoe, R ;
Lee, B ;
Marshall, S ;
McKay, T ;
Miller, R ;
Piro, L ;
Priedhorsky, W ;
Szymanski, J ;
Wren, J .
NATURE, 1999, 398 (6726) :400-402
[2]  
BEST P, 2000, IN PRESS PHYS FLUIDS
[3]  
BLANDFORD RD, 1976, PHYS FLUIDS, V19, P1130, DOI 10.1063/1.861619
[4]  
FENIMORE EE, 1999, UNPUB APJ
[5]   The effect of magnetic fields on γ-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999 [J].
Galama, TJ ;
Briggs, MS ;
Wijers, RAMJ ;
Vreeswijk, PM ;
Rol, E ;
Band, D ;
van Paradijs, J ;
Kouveliotou, C ;
Preece, RD ;
Bremer, M ;
Smith, IA ;
Tilanus, RPJ ;
de Bruyn, AG ;
Strom, RG ;
Pooley, G ;
Castro-Tirado, AJ ;
Tanvir, N ;
Robinson, C ;
Hurley, K ;
Heise, J ;
Telting, J ;
Rutten, RGM ;
Packham, C ;
Swaters, R ;
Davies, JK ;
Fassia, A ;
Green, SF ;
Foster, MJ ;
Sagar, R ;
Pandey, AK ;
Nilakshi ;
Yadav, RKS ;
Ofek, EO ;
Leibowitz, E ;
Ibbetson, P ;
Rhoads, J ;
Falco, E ;
Petry, C ;
Impey, C ;
Geballe, TR ;
Bhattacharya, D .
NATURE, 1999, 398 (6726) :394-399
[6]  
Granot J, 2000, ASTROPHYS J, V534, pL163, DOI 10.1086/312661
[7]   Images and spectra from the interior of a relativistic fireball [J].
Granot, J ;
Piran, T ;
Sari, R .
ASTROPHYSICAL JOURNAL, 1999, 513 (02) :679-689
[8]   Synchrotron self-absorption in gamma-ray burst afterglow [J].
Granot, J ;
Piran, T ;
Sari, R .
ASTROPHYSICAL JOURNAL, 1999, 527 (01) :236-246
[9]  
KUMAR P, 1999, ASTROPH9906002
[10]   Viewing angle and environment effects in gamma-ray bursts: Sources of afterglow diversity [J].
Meszaros, P ;
Rees, MJ ;
Wijers, RAMJ .
ASTROPHYSICAL JOURNAL, 1998, 499 (01) :301-308