High-order variational calculation for the frequency of time-periodic solutions

被引:25
作者
Pelster, A
Kleinert, H
Schanz, M
机构
[1] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
[2] Univ Stuttgart, Inst Parallel & Distributed Syst, D-70565 Stuttgart, Germany
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevE.67.016604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a convergent variational perturbation theory for the frequency of time-periodic solutions of nonlinear dynamical systems. The power of the theory is illustrated by applying it to the Duffing oscillator.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
[2]  
Bogoliubov NN., 1961, Asymptotic methods in the theory of non-linear oscillations (In Russian)
[3]   EFFECTIVE CLASSICAL PARTITION-FUNCTIONS [J].
FEYNMAN, RP ;
KLEINERT, H .
PHYSICAL REVIEW A, 1986, 34 (06) :5080-5084
[4]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI
[5]   CONVERGENT STRONG-COUPLING EXPANSIONS FROM DIVERGENT WEAK-COUPLING PERTURBATION-THEORY [J].
JANKE, W ;
KLEINERT, H .
PHYSICAL REVIEW LETTERS, 1995, 75 (15) :2787-2791
[6]   Theory and satellite experiment for critical exponent α of λ-transition in superfluid helium [J].
Kleinert, H .
PHYSICS LETTERS A, 2000, 277 (4-5) :205-211
[7]   SYSTEMATIC CORRECTIONS TO THE VARIATIONAL CALCULATION OF THE EFFECTIVE CLASSICAL POTENTIAL [J].
KLEINERT, H .
PHYSICS LETTERS A, 1993, 173 (4-5) :332-342
[8]   CONVERGENCE BEHAVIOR OF VARIATIONAL PERTURBATION EXPANSION - A METHOD FOR LOCATING BENDER-WU SINGULARITIES [J].
KLEINERT, H ;
JANKE, W .
PHYSICS LETTERS A, 1995, 206 (5-6) :283-289
[9]  
Kleinert H., 2001, CRITICAL PROPERTIES
[10]  
Kleinert H., 1995, PATH INTEGRALS QUANT