Comparative morphometry of mammalian central auditory systems: Variation in nuclei and form of the ascending system

被引:76
作者
Glendenning, KK [1 ]
Masterton, RB [1 ]
机构
[1] Florida State Univ, Program Neurosci, Tallahassee, FL 32306 USA
关键词
hearing; allometry; marsupials; placentals; evolution;
D O I
10.1159/000006530
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The volumes of the ten largest subcortical auditory nuclei were measured individually in a sample of 53 mammals, including 16 Australian and four American marsupials. The nuclear sizes relative to the total of subcortical auditory tissue were normalized and then analyzed individually for statistically reliable deviations. The overall form of the entire system of ten nuclei and two nuclear subsystems (cochlear nuclei, superior olives) were also analyzed for similarities and notable deviations among the animals. The results show that the absolute size of the auditory system varies more than 139-fold among the 53 mammals (with moles the smallest and humans the largest). Log auditory system volume and log brain weight are closely correlated (r=0.903, p<0.0001). Bats, kangaroo rats, marmosa opossums, and Norway rats have the largest auditory systems relative to their brain size, while humans have the smallest by far. The other primates also have auditory system/brain size ratios smaller than the sample average, suggesting that the condition in humans is one result of an expansion of non-auditory brain parts rather than a reduction of the auditory system over geological time. The relative sizes of the ten nuclei are well ordered, with the inferior colliculus the largest nucleus by far and medial superior olive the smallest. Because the size of the superior olives, collectively, is reliably related to the size of anteroventral cochlear nucleus (r=0.744, p<0.001), and not to the size of dorsal cochlear nucleus, the interconnectivity of the subcortical auditory system is probably a factor in the size of the nuclei. In its overall form, the subcortical auditory system is highly similar among mammals, with an average correlation across nuclei of 0.923. This high value means that the overall form of the system has been relatively stable over geological time. The animals with least deviation from the average form are ring-tailed possums, bandicoots, and yellow-bellied gliders, all marsupials. Those with the most unusual forms are mice, bats, and kangaroo rats, all placentals.
引用
收藏
页码:59 / 89
页数:31
相关论文
共 66 条