Fractional calculus and continuous-time finance

被引:665
作者
Scalas, E
Gorenflo, R
Mainardi, F
机构
[1] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, I-15100 Alessandria, Italy
[2] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[3] Free Univ Berlin, Erstes Matemat Inst, D-14195 Berlin, Germany
[4] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[5] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy
关键词
stochastic processes; random walk; statistical finance; econophysics;
D O I
10.1016/S0378-4371(00)00255-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present a rather general phenomenological theory of tick-by-tick dynamics in financial markets. Many well-known aspects, such as the Levy scaling form, follow as particular cases of the theory. The theory fully takes into account the non-Markovian and non-local character of financial time series. Predictions on the long-time behaviour of the waiting-time probability density are presented. Finally, a general scaling form is given, based on the solution of the fractional diffusion equation. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:376 / 384
页数:9
相关论文
共 32 条
[1]  
Afanasiev VV, 1991, CHAOS, V1
[2]  
BACHELIER L, 2000, THEORY SPECULATION
[3]  
BALESCU R, 1994, STAT DYNAMICS MATTER
[4]  
BOYARCHENKO SI, 1999, PREPRINT
[5]   SUBORDINATED STOCHASTIC-PROCESS MODEL WITH FINITE VARIANCE FOR SPECULATIVE PRICES [J].
CLARK, PK .
ECONOMETRICA, 1973, 41 (01) :135-155
[6]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[7]  
Cootner P., 1964, RANDOM CHARACTER STO
[8]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[9]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[10]  
GORENFLO R, UNPUB