Regulation of dendritic cell function through Toll-like receptors

被引:147
作者
Kaisho, T
Akira, S
机构
[1] Osaka Univ, Microbial Dis Res Inst, Dept Host Def, Suita, Osaka 5650871, Japan
[2] RIKEN, Res Ctr Allergy & Immunol, Yokohama, Kanagawa 2300045, Japan
[3] Japan Sci & Technol Corp, ERATO, Akira Innate Immun Project, Suita, Osaka 5650871, Japan
关键词
D O I
10.2174/1566524033479726
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 120 条
[1]   Functional diversity of helper T lymphocytes [J].
Abbas, AK ;
Murphy, KM ;
Sher, A .
NATURE, 1996, 383 (6603) :787-793
[2]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[3]   Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen [J].
Akbari, O ;
DeKruyff, RH ;
Umetsu, DT .
NATURE IMMUNOLOGY, 2001, 2 (08) :725-731
[4]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[5]   Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice [J].
Alexopoulou, L ;
Thomas, V ;
Schnare, M ;
Lobet, Y ;
Anguita, J ;
Schoen, RT ;
Medzhitov, R ;
Fikrig, E ;
Flavell, RA .
NATURE MEDICINE, 2002, 8 (08) :878-884
[6]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[7]   TLR4 mutations are associated with endotoxin hyporesponsiveness in humans [J].
Arbour, NC ;
Lorenz, E ;
Schutte, BC ;
Zabner, J ;
Kline, JN ;
Jones, M ;
Frees, K ;
Watt, JL ;
Schwartz, DA .
NATURE GENETICS, 2000, 25 (02) :187-+
[8]   Mouse type IIFN-producing cells are immature APCs with plasmacytoid morphology [J].
Asselin-Paturel, C ;
Boonstra, A ;
Dalod, M ;
Durand, I ;
Yessaad, N ;
Dezutter-Dambuyant, C ;
Vicari, A ;
O'Garra, A ;
Biron, C ;
Brière, F ;
Trinchieri, G .
NATURE IMMUNOLOGY, 2001, 2 (12) :1144-1150
[9]   Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs [J].
Ballas, ZK ;
Krieg, AM ;
Warren, T ;
Rasmussen, W ;
Davis, HL ;
Waldschmidt, M ;
Weiner, GJ .
JOURNAL OF IMMUNOLOGY, 2001, 167 (09) :4878-4886
[10]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252