A carboxylate triad is essential for the polymerase activity of Escherichia coli DNA polymerase I (Klenow fragment) -: Presence of two functional triads at the catalytic center

被引:12
作者
Gangurde, R [1 ]
Kaushik, N [1 ]
Singh, H [1 ]
Modak, J [1 ]
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Biochem & Mol Biol, Newark, NJ 07103 USA
关键词
D O I
10.1074/jbc.M002307200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The catalytic roles of two essential active-site aspartates at positions 705 and 882 of Escherichia coli DNA polymerase I have been well established (Steitz, T. A. (1998) Nature 391, 231-232), We now demonstrate that the participation of at least one additional carboxylate, a glutamate at position 710 or 883, is obligatory for catalysis. This conclusion has been drawn from our investigation of the properties of single (E710D, E710A, E883D, and E883A) and double (E710D/E883D and E710A/E883A) substitutions of residues Glu(710) and Glu(883). While single substitutions of either of the glutamates resulted in some reduction in polymerase activity, the mutant enzyme with simultaneous substitution of both glutamates with alanine exhibited a nearly complete loss of activity. Interestingly, substitution with two aspartates in place of the glutamates resulted in an enzyme species that catalyzed DNA synthesis in a strictly distributive mode. Pyrophosphorolytic activity of the mutant enzymes reflected their polymerase activity profiles, with markedly reduced pyrophosphorolysis by the double mutant enzymes. Moreover, an evaluation of Mg2+ and salt optima for all mutant enzymes of Glu(710) and Glu(883) revealed significant deviations from that for the wild type, implying a possible role of these glutamates in metal coordination as well as in maintaining the structural integrity of the active site.
引用
收藏
页码:19685 / 19692
页数:8
相关论文
共 37 条
[1]   A SEQUENCE MOTIF IN MANY POLYMERASES [J].
ARGOS, P .
NUCLEIC ACIDS RESEARCH, 1988, 16 (21) :9909-9916
[2]   DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE BINDING-SITES IN THE CATALYTICALLY COMPETENT TERNARY COMPLEX FOR THE POLYMERASE REACTION CATALYZED BY DNA-POLYMERASE-I (KLENOW FRAGMENT) [J].
ASTATKE, M ;
GRINDLEY, NDF ;
JOYCE, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1945-1954
[3]   How E-coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides [J].
Astatke, M ;
Grindley, NDF ;
Joyce, CM .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 278 (01) :147-165
[4]   A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides [J].
Astatke, M ;
Ng, KM ;
Grindley, NDF ;
Joyce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3402-3407
[5]   CRYSTAL-STRUCTURES OF THE KLENOW FRAGMENT OF DNA-POLYMERASE-I COMPLEXED WITH DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE [J].
BEESE, LS ;
FRIEDMAN, JM ;
STEITZ, TA .
BIOCHEMISTRY, 1993, 32 (51) :14095-14101
[6]   STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA [J].
BEESE, LS ;
DERBYSHIRE, V ;
STEITZ, TA .
SCIENCE, 1993, 260 (5106) :352-355
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Elucidation of the role of arg 110 of murine leukemia virus reverse transcriptase in the catalytic mechanism: Biochemical characterization of its mutant enzymes [J].
Chowdhury, K ;
Kaushik, N ;
Pandey, VN ;
Modak, MJ .
BIOCHEMISTRY, 1996, 35 (51) :16610-16620
[9]  
COPELAND WC, 1993, J BIOL CHEM, V268, P11028
[10]   KINETIC MECHANISM OF DNA-POLYMERASE-I (KLENOW FRAGMENT) - IDENTIFICATION OF A 2ND CONFORMATIONAL CHANGE AND EVALUATION OF THE INTERNAL EQUILIBRIUM-CONSTANT [J].
DAHLBERG, ME ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1991, 30 (20) :4835-4843