Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease

被引:58
作者
Ballard, David H. [1 ]
Cho, Judy [2 ,3 ]
Zhao, Hongyu [3 ,4 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT USA
[2] Yale Univ, Dept Med, Div Gastroenterol, IBD Ctr, New Haven, CT 06520 USA
[3] Yale Univ, Dept Genet, New Haven, CT USA
[4] Yale Univ, Dept Epidemiol & Publ Hlth, New Haven, CT 06520 USA
关键词
multi-marker; association; power; GENOME-WIDE ASSOCIATION; TESTS; POWER; SNPS;
D O I
10.1002/gepi.20448
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The joint use of information from multiple markers may be more effective to reveal association between a genomic region and a trait than single marker analysis. In this article, we compare the performance of seven multi-marker methods. These methods include (1) single marker analysis (either the best-scoring single nucleotide polymorphism in a candidate region or a combined test based on Fisher's method); (2) fixed effects regression models where the predictors are either the observed genotypes in the region, principal components that explain a proportion of the genetic variation, or predictors based on Fourier transformation for the genotypes; and (3) variance components analysis. In our simulation studies, we consider genetic models where the association is due to one, two, or three markers, and the disease-causing markers have varying allele frequencies. We use information from either all the markers in a region or information only from tagging markers. Our simulation results suggest that when there is one disease-causing variant, the best-scoring marker method is preferred whereas the variance components method and the principal components method work well for more common disease-causing variants. When there is more than one disease-causing variant, the principal components method seems to perform well over all the scenarios studied. When these methods are applied to analyze associations between all the markers in or near a gene and disease status for an inflammatory bowel disease data set, the analysis based on the principal components method eads to biologically more consistent discoveries than other methods. Genet. Epidemiol. 34:201-212, 2010. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 24 条
[1]   Haplotypes vs single marker linkage disequilibrium tests:: what do we gain? (Reprinted European Journal of Human Genetics, Vol 4, pg 291-300, 2001) [J].
Akey, Joshua ;
Jin, Li ;
Xiong, Momiao .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 :S51-S58
[2]   A haplotype map of the human genome [J].
Altshuler, D ;
Brooks, LD ;
Chakravarti, A ;
Collins, FS ;
Daly, MJ ;
Donnelly, P ;
Gibbs, RA ;
Belmont, JW ;
Boudreau, A ;
Leal, SM ;
Hardenbol, P ;
Pasternak, S ;
Wheeler, DA ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Zeng, CQ ;
Gao, Y ;
Hu, HR ;
Hu, WT ;
Li, CH ;
Lin, W ;
Liu, SQ ;
Pan, H ;
Tang, XL ;
Wang, J ;
Wang, W ;
Yu, J ;
Zhang, B ;
Zhang, QR ;
Zhao, HB ;
Zhao, H ;
Zhou, J ;
Gabriel, SB ;
Barry, R ;
Blumenstiel, B ;
Camargo, A ;
Defelice, M ;
Faggart, M ;
Goyette, M ;
Gupta, S ;
Moore, J ;
Nguyen, H ;
Onofrio, RC ;
Parkin, M ;
Roy, J ;
Stahl, E ;
Winchester, E ;
Ziaugra, L ;
Shen, Y .
NATURE, 2005, 437 (7063) :1299-1320
[3]   Comparison of Association Methods for Dense Marker Data [J].
Bacanu, Silviu-Alin ;
Nelson, Matthew R. ;
Ehm, Margaret G. .
GENETIC EPIDEMIOLOGY, 2008, 32 (08) :791-799
[4]   Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease [J].
Barrett, Jeffrey C. ;
Hansoul, Sarah ;
Nicolae, Dan L. ;
Cho, Judy H. ;
Duerr, Richard H. ;
Rioux, John D. ;
Brant, Steven R. ;
Silverberg, Mark S. ;
Taylor, Kent D. ;
Barmada, M. Michael ;
Bitton, Alain ;
Dassopoulos, Themistocles ;
Datta, Lisa Wu ;
Green, Todd ;
Griffiths, Anne M. ;
Kistner, Emily O. ;
Murtha, Michael T. ;
Regueiro, Miguel D. ;
Rotter, Jerome I. ;
Schumm, L. Philip ;
Steinhart, A. Hillary ;
Targan, Stephan R. ;
Xavier, Ramnik J. ;
Libioulle, Cecile ;
Sandor, Cynthia ;
Lathrop, Mark ;
Belaiche, Jacques ;
Dewit, Olivier ;
Gut, Ivo ;
Heath, Simon ;
Laukens, Debby ;
Mni, Myriam ;
Rutgeerts, Paul ;
Van Gossum, Andre ;
Zelenika, Diana ;
Franchimont, Denis ;
Hugot, Jean-Pierre ;
de Vos, Martine ;
Vermeire, Severine ;
Louis, Edouard ;
Cardon, Lon R. ;
Anderson, Carl A. ;
Drummond, Hazel ;
Nimmo, Elaine ;
Ahmad, Tariq ;
Prescott, Natalie J. ;
Onnie, Clive M. ;
Fisher, Sheila A. ;
Marchini, Jonathan ;
Ghori, Jilur .
NATURE GENETICS, 2008, 40 (08) :955-962
[5]   Detecting disease associations due to linkage disequilibrium using haplotype tags: A class of tests and the determinants of statistical power [J].
Chapman, JM ;
Cooper, JD ;
Todd, JA ;
Clayton, DG .
HUMAN HEREDITY, 2003, 56 (1-3) :18-31
[6]   Analysis of multiple SNPs in a candidate gene or region [J].
Chapman, Juliet ;
Whittaker, John .
GENETIC EPIDEMIOLOGY, 2008, 32 (06) :560-566
[7]   Use of unphased multilocus genotype data in indirect association studies [J].
Clayton, D ;
Chapman, J ;
Cooper, J .
GENETIC EPIDEMIOLOGY, 2004, 27 (04) :415-428
[8]   Efficiency and power in genetic association studies [J].
de Bakker, PIW ;
Yelensky, R ;
Pe'er, I ;
Gabriel, SB ;
Daly, MJ ;
Altshuler, D .
NATURE GENETICS, 2005, 37 (11) :1217-1223
[9]   A genome-wide association study identifies IL23R as an inflammatory bowel disease gene [J].
Duerr, Richard H. ;
Taylor, Kent D. ;
Brant, Steven R. ;
Rioux, John D. ;
Silverberg, Mark S. ;
Daly, Mark J. ;
Steinhart, A. Hillary ;
Abraham, Clara ;
Regueiro, Miguel ;
Griffiths, Anne ;
Dassopoulos, Themistocles ;
Bitton, Alain ;
Yang, Huiying ;
Targan, Stephan ;
Datta, Lisa Wu ;
Kistner, Emily O. ;
Schumm, L. Philip ;
Lee, Annette T. ;
Gregersen, Peter K. ;
Barmada, M. Michael ;
Rotter, Jerome I. ;
Nicolae, Dan L. ;
Cho, Judy H. .
SCIENCE, 2006, 314 (5804) :1461-1463
[10]   Testing association between disease and multiple SNPs in a candidate gene [J].
Gauderman, W. James ;
Murcray, Cassandra ;
Gilliland, Frank ;
Conti, David V. .
GENETIC EPIDEMIOLOGY, 2007, 31 (05) :383-395