Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol

被引:211
作者
Barnes, Catherine P.
Pemble, Charles W.
Brand, David D.
Simpson, David G.
Bowlin, Gary L.
机构
[1] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Anat, Richmond, VA 23284 USA
[3] Wake Forest Univ, Dept Biochem, Winston Salem, NC 27109 USA
[4] Vet Affairs Med Ctr, Memphis, TN USA
来源
TISSUE ENGINEERING | 2007年 / 13卷 / 07期
关键词
D O I
10.1089/ten.2006.0292
中图分类号
Q813 [细胞工程];
学科分类号
摘要
In trying to assess the structural integrity of electrospun type II collagen scaffolds, a modified but new technique for cross-linking collagen has been developed. Carbodiimides have been previously used to cross-link collagen in gels and in lyophilized native tissue specimens but had not been used for electrospun mats until recently. This cross-linking agent, and in particular 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), is of extreme interest, especially for tissue-engineered scaffolds composed specifically of native polymers (e. g., collagen), because it is a zero-length cross-linking agent that has not been shown to cause any cytotoxic reactions. The unique aspect of the cross-linking protocol in this study involves the use of ethanol as the solvent for the cross-linking agent, because the pure collagen electrospun mats immediately disintegrate when placed in an aqueous solution. This study examines 2 concentrations of EDC with and without the addition of N-hydroxysuccinimide to the reaction (which has been shown to result in higher cross-linking yields in aqueous solutions) to test the hypothesis that the use of EDC in a nonaqueous solution will cross-link electrospun type II collagen fibrous matrices in a comparable manner to typical glutaraldehyde fixation protocols. The use of EDC is compared with the cross-linking effects of glutaraldehyde via mechanical testing (uniaxial tensile testing) and biochemical testing (analysis of the percentage of free amino groups). The stress-strain curves of the cross-linked samples demonstrated uniaxial tensile behavior more characteristic of native tissue than do the dry, untreated samples. The heated, 50% glutaraldehyde cross-linking protocol resulted in a mean peak stress of 0.76 MPa, a mean strain at break of 127.30%, and a mean tangential modulus of 0.89 MPa; mean values for the samples treated with the EDC protocols ranged from 0.35 to 0.60 MPa for peak stress, from 111.83 to 159.23% for strain at break, and from 0.57 to 0.92 MPa for tangential modulus. Low and high concentrations (20 mM and 200 mM, respectively) of EDC alone were comparable in extent of cross-linking (29% and 29%, respectively) to the heated 50% glutaraldehyde cross-linking protocol (30% cross-linked).
引用
收藏
页码:1593 / 1605
页数:13
相关论文
共 57 条
[1]   TENSILE PROPERTIES OF HUMAN KNEE-JOINT CARTILAGE .1. INFLUENCE OF IONIC CONDITIONS, WEIGHT BEARING, AND FIBRILLATION ON THE TENSILE MODULUS [J].
AKIZUKI, S ;
MOW, VC ;
MULLER, F ;
PITA, JC ;
HOWELL, DS ;
MANICOURT, DH .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1986, 4 (04) :379-392
[2]   Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices [J].
Angele, P ;
Abke, J ;
Kujat, R ;
Faltermeier, H ;
Schumann, D ;
Nerlich, M ;
Kinner, B ;
Englert, C ;
Ruszczak, Z ;
Mehrl, R ;
Mueller, R .
BIOMATERIALS, 2004, 25 (14) :2831-2841
[3]  
[Anonymous], METHODS TISSUE ENG
[4]  
Auger FA, 2004, BIOTECHNOL APPL BIOC, V39, P263
[5]  
BARNES CP, 2005, 8 ANN M TISS ENG SOC
[6]  
BELL E, 2000, PRINCIPLES TISSUE EN, P181
[7]   Electrospinning collagen and elastin: Preliminary vascular tissue engineering [J].
Boland, ED ;
Matthews, JA ;
Pawlowski, KJ ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 :1422-1432
[8]  
BRAND DD, 2005, PROTOCOLS ACID EXTRA
[9]   Electrospinning of collagen and elastin for tissue engineering applications [J].
Buttafoco, L ;
Kolkman, NG ;
Engbers-Buijtenhuijs, P ;
Poot, AA ;
Dijkstra, PJ ;
Vermes, I ;
Feijen, J .
BIOMATERIALS, 2006, 27 (05) :724-734
[10]   Cross-linking of dermal sheep collagen using a water-soluble carbodiimide [J].
Damink, LHHO ;
Dijkstra, PJ ;
vanLuyn, MJA ;
vanWachem, PB ;
Nieuwenhuis, P ;
Feijen, J .
BIOMATERIALS, 1996, 17 (08) :765-773