Pseudo-observations in survival analysis

被引:248
作者
Andersen, Per Kragh [1 ]
Perme, Maja Pohar [2 ]
机构
[1] Univ Copenhagen, Dept Biostat, DK-1014 Copenhagen K, Denmark
[2] Univ Ljubljana, Dept Biomed Informat, SI-1000 Ljubljana, Slovenia
关键词
REGRESSION-ANALYSIS; MULTISTATE MODELS;
D O I
10.1177/0962280209105020
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We review recent work on the application of pseudo-observations in survival and event history analysis. This includes regression models for parameters like the survival function in a single point, the restricted mean survival time and transition or state occupation probabilities in multi-state models, e.g. the competing risks cumulative incidence function. Graphical and numerical methods for assessing goodness-of-fit for hazard regression models and for the Fine-Gray model in competing risks studies based on pseudo-observations are also reviewed. Sensitivity to covariate-dependent censoring is studied. The methods are illustrated using a data set from bone marrow transplantation.
引用
收藏
页码:71 / 99
页数:29
相关论文
共 22 条
[1]   Regression analysis for multistate models based on a pseudo-value approach, with applications to bone marrow transplantation studies [J].
Andersen, Per K. ;
Klein, John P. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (01) :3-16
[2]   Regression analysis of restricted mean survival time based on pseudo-observations [J].
Andersen, PK ;
Hansen, MG ;
Klein, JP .
LIFETIME DATA ANALYSIS, 2004, 10 (04) :335-350
[3]   Generalised linear models for correlated pseudo-observations, with applications to multi-state models [J].
Andersen, PK ;
Klein, JP ;
Rosthoj, S .
BIOMETRIKA, 2003, 90 (01) :15-27
[4]  
Andersen PK, 2002, STAT METHODS MED RES, V11, P91, DOI 10.1191/0962280202SM276ra
[5]   Regression models for the mean of the quality-of-life-adjusted restricted survival time using pseudo-observations [J].
Andrei, Adin-Cristian ;
Murray, Susan .
BIOMETRICS, 2007, 63 (02) :398-404
[6]  
[Anonymous], 1998, Applied Regression Analysis
[7]  
[Anonymous], 2012, Statistical models based on counting processes
[8]   Temporal process regression [J].
Fine, JP ;
Yan, J ;
Kosorok, MR .
BIOMETRIKA, 2004, 91 (03) :683-703
[9]   A proportional hazards model for the subdistribution of a competing risk [J].
Fine, JP ;
Gray, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) :496-509
[10]   On pseudo-values for regression analysis in competing risks models [J].
Graw, Frederik ;
Gerds, Thomas A. ;
Schumacher, Martin .
LIFETIME DATA ANALYSIS, 2009, 15 (02) :241-255