In vitro synthesis of (1→3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen

被引:40
作者
Colombani, A
Djerbi, S
Bessueille, L
Blomqvist, K
Ohlsson, A
Berglund, T
Teeri, TT
Bulone, V
机构
[1] Univ Lyon 1, CNRS, UMR 5013, Equipe Organisat & Dynam Membranes Biol, F-69622 Villeurbanne, France
[2] AlbaNova Univ Ctr, Royal Inst Technol, Dept Biotechnol, SE-10691 Stockholm, Sweden
关键词
(1 -> 3)-beta-D-glucan (callose) and cellulose synthases; hybrid aspen (Populus tremula x tremuloides); in vitro synthesis of callose and cellulose; plant cell walls; suspension cultures;
D O I
10.1023/B:CELL.0000046404.25406.19
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The aim of this work was to optimize the conditions for in vitro synthesis of (1 --> 3)-beta-D-glucan (callose) and cellulose, using detergent extracts of membranes from hybrid aspen (Populus tremula x tremuloides) cells grown as suspension cultures. Callose was the only product synthesized when CHAPS extracts were used as a source of enzyme. The optimal reaction mixture for callose synthesis contained 100 mM Mops buffer pH 7.0, 1 mM UDP-glucose, 8 mM Ca2+, and 20 mM cellobiose. The use of digitonin to extract the membrane-bound proteins was required for cellulose synthesis. Yields as high as 50% of the total in vitro products were obtained when cells were harvested in the stationary phase of the growth curve, callose being the other product. The optimal mixture for cellulose synthesis consisted of 100 mM Mops buffer pH 7.0, 1 mM UDP-glucose, 1 mM Ca2+, 8 mM Mg2+, and 20 mM cellobiose. The in vitro beta-glucans were identified by hydrolysis of radioactive products, using specific enzymes. C-13-Nuclear magnetic resonance spectroscopy and transmission electron microscopy were also used for callose characterization. The (1-->3)-beta-D-glucan systematically had a microfibrillar morphology, but the size and organization of the microfibrils were affected by the nature of the detergent used for enzyme extraction. The discussion of the results is included in a short review of the field that also compares the data obtained with those available in the literature. The results presented show that the hybrid aspen is a promising model for in vitro studies on callose and cellulose synthesis.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 67 条
[1]   COTTON FIBER ANNEXINS - A POTENTIAL ROLE IN THE REGULATION OF CALLOSE SYNTHASE [J].
ANDRAWIS, A ;
SOLOMON, M ;
DELMER, DP .
PLANT JOURNAL, 1993, 3 (06) :763-772
[2]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[3]   IMPROVED SILVER STAINING OF PLANT-PROTEINS, RNA AND DNA IN POLYACRYLAMIDE GELS [J].
BLUM, H ;
BEIER, H ;
GROSS, HJ .
ELECTROPHORESIS, 1987, 8 (02) :93-99
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   The biosynthesis of cellulose [J].
Brown, RM .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1996, A33 (10) :1345-1373
[6]   IN-VITRO SYNTHESIS OF A MICROFIBRILLAR (1-]3)-BETA-GLUCAN BY A RYEGRASS (LOLIUM-MULTIFLORUM) ENDOSPERM (1-]3)-BETA-GLUCAN SYNTHASE ENRICHED BY PRODUCT ENTRAPMENT [J].
BULONE, V ;
FINCHER, GB ;
STONE, BA .
PLANT JOURNAL, 1995, 8 (02) :213-225
[7]   The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes [J].
Burton, RA ;
Shirley, NJ ;
King, BJ ;
Harvey, AJ ;
Fincher, GB .
PLANT PHYSIOLOGY, 2004, 134 (01) :224-236
[8]   The yeast cell wall and septum as paradigms of cell growth and morphogenesis [J].
Cabib, E ;
Roh, DH ;
Schmidt, M ;
Crotti, LB ;
Varma, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :19679-19682
[9]   A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities [J].
Campbell, JA ;
Davies, GJ ;
Bulone, V ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 326 :929-939
[10]  
COUTINHO PM, 1999, CARBOHYDRATE ACTIVE