Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain

被引:125
作者
Sajda, P
Du, SY
Brown, TR
Stoyanova, R
Shungu, DC
Mao, XL
Parra, LC
机构
[1] Columbia Univ, Lab Intelligent Imaging & Neural Comp, Dept Biomed Engn, New York, NY 10027 USA
[2] Columbia Univ, Hatch Magnet Resonance Res Lab, Neurol Inst, Dept Radiol & Biomed Engn, New York, NY 10032 USA
[3] Fox Chase Canc Ctr, Dept Biostat, Philadelphia, PA 19111 USA
[4] Cornell Univ, Weill Med Coll, Citigrp Biomed Imaging Ctr, New York, NY 10021 USA
[5] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA
关键词
blind source separation (BSS); chemical shift imaging (CSI); hierarchical decomposition; magnetic resonance (MR); magnetic resonance spectroscopy (MRS); nonnegative matrix factorization (NMF);
D O I
10.1109/TMI.2004.834626
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an algorithm for blindly recovering constituent source spectra from magnetic resonance (MR) chemical shift imaging (CSI) of the human brain. The algorithm, which we call constrained nonnegative matrix factorization (cNMF), does not enforce independence or sparsity, instead only requiring the source and mixing matrices to be nonnegative. It is based on the nonnegative matrix factorization (NMF) algorithm, extending it to include a constraint on the positivity of the amplitudes of the recovered spectra. This constraint enables recovery of physically meaningful spectra even in the presence of noise that causes a significant number of the observation amplitudes to be negative. We demonstrate and characterize the algorithm's performance using P-31 volumetric brain data, comparing the results with two different blind source separation methods: Bayesian spectral decomposition (BSD) and nonnegative sparse coding (NNSC). We then incorporate the cNMF algorithm into a hierarchical decomposition framework, showing that it can be used to recover tissue-specific spectra given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the hierarchical procedure on H-1 brain data and conclude that the computational efficiency of the algorithm makes it well-suited for use in diagnostic work-up.
引用
收藏
页码:1453 / 1465
页数:13
相关论文
共 38 条
[1]  
Alesch F, 1995, Acta Neurochir Suppl, V63, P20
[2]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[3]   COMPLICATIONS OF CT-GUIDED STEREOTAXIC BIOPSY OF INTRAAXIAL BRAIN-LESIONS [J].
BERNSTEIN, M ;
PARRENT, AG .
JOURNAL OF NEUROSURGERY, 1994, 81 (02) :165-168
[4]   NMR CHEMICAL-SHIFT IMAGING IN 3 DIMENSIONS [J].
BROWN, TR ;
KINCAID, BM ;
UGURBIL, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (11) :3523-3526
[5]   CLINICAL MR SPECTROSCOPY - FUNDAMENTALS, CURRENT APPLICATIONS, AND FUTURE POTENTIAL [J].
COUSINS, JP .
AMERICAN JOURNAL OF ROENTGENOLOGY, 1995, 164 (06) :1337-1347
[6]   MULTISECTION PROTON MR SPECTROSCOPIC IMAGING OF THE BRAIN [J].
DUYN, JH ;
GILLEN, J ;
SOBERING, G ;
VANZIJL, PCM ;
MOONEN, CTW .
RADIOLOGY, 1993, 188 (01) :277-282
[7]  
Friedman Nir, 2001, P 17 C UNC ART INT, P152
[8]   MAPPING OF BRAIN-TUMOR METABOLITES WITH PROTON MR SPECTROSCOPIC IMAGING - CLINICAL RELEVANCE [J].
FULHAM, MJ ;
BIZZI, A ;
DIETZ, MJ ;
SHIH, HHL ;
RAMAN, R ;
SOBERING, GS ;
FRANK, JA ;
DWYER, AJ ;
ALGER, JR ;
DICHIRO, G .
RADIOLOGY, 1992, 185 (03) :675-686
[9]  
Furuya S, 1997, NMR BIOMED, V10, P25, DOI 10.1002/(SICI)1099-1492(199701)10:1<25::AID-NBM445>3.0.CO
[10]  
2-M