Boron nitride nanotubes synthesized in the temperature range 1000-1200 °C

被引:63
作者
Bae, SY
Seo, HW
Park, J [1 ]
Choi, YS
Park, JC
Lee, SY
机构
[1] Korea Univ, Dept Chem, Jochiwon 339700, South Korea
[2] Korea Univ, Dept Chem, Seoul 136701, South Korea
[3] Hynix Semiconductor Inc, Cheongju 361725, South Korea
[4] Hynix Semiconductor Inc, Ichon, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1016/S0009-2614(03)00745-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Boron nitride nanotubes were synthesized on the iron-deposited alumina substrates by a catalytic reaction of the ball-milled boron and boron nitride powder mixture with ammonia in the temperature range 1000-1200 degreesC. The diameter of nanotubes is in the range of 40-100 nm. The nanotubes grown below 1100 degreesC possess exclusively a bamboo-like structure. As the temperature increases to 1200 degreesC, almost all nanotubes show a cylindrical structure in which the boron nitride sheets are tilted to the tube axis by an angle of about 25degrees. Electron energy-loss spectroscopy identities that the ratio of boron and nitrogen is almost one. The Raman scattering peak associated with the E-2g mode shifts to the I higher frequency and narrows as the growth temperature increases. The results indicate that the growth temperature can be a crucial growth pararneter in controlling the structure and crystallinity of boron nitride nanotubes. Oil the basis of the structural features, we suggest a base-growth mechanism for both bamboo-like and cylindrical boron nitride nanotubes. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:534 / 541
页数:8
相关论文
共 24 条
[1]   Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling [J].
Chen, Y ;
Fitz Gerald, JD ;
Williams, JS ;
Bulcock, S .
CHEMICAL PHYSICS LETTERS, 1999, 299 (3-4) :260-264
[2]   A solid-state process for formation of boron nitride nanotubes [J].
Chen, Y ;
Chadderton, LT ;
FitzGerald, J ;
Williams, JS .
APPLIED PHYSICS LETTERS, 1999, 74 (20) :2960-2962
[3]   Measurement of the elastic modulus of a multi-wall boron nitride nanotube [J].
Chopra, NG ;
Zettl, A .
SOLID STATE COMMUNICATIONS, 1998, 105 (05) :297-300
[4]   BORON-NITRIDE NANOTUBES [J].
CHOPRA, NG ;
LUYKEN, RJ ;
CHERREY, K ;
CRESPI, VH ;
COHEN, ML ;
LOUIE, SG ;
ZETTL, A .
SCIENCE, 1995, 269 (5226) :966-967
[5]   Boron nitride nanotubes and nanowires [J].
Deepak, FL ;
Vinod, CP ;
Mukhopadhyay, K ;
Govindaraj, A ;
Rao, CNR .
CHEMICAL PHYSICS LETTERS, 2002, 353 (5-6) :345-352
[6]   Structure of boron nitride nanotubules [J].
Demczyk, BG ;
Cumings, J ;
Zettl, A ;
Ritchie, RO .
APPLIED PHYSICS LETTERS, 2001, 78 (18) :2772-2774
[7]   Nanotubes in boron nitride laser heated at high pressure [J].
Golberg, D ;
Bando, Y ;
Eremets, M ;
Takemura, K ;
Kurashima, K ;
Yusa, H .
APPLIED PHYSICS LETTERS, 1996, 69 (14) :2045-2047
[8]  
GRICK R, 1966, PHYS REV, V146, P543
[9]   Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction [J].
Han, WQ ;
Bando, Y ;
Kurashima, K ;
Sato, T .
APPLIED PHYSICS LETTERS, 1998, 73 (21) :3085-3087
[10]   Synthesis of boron nitride nanowires [J].
Huo, KF ;
Hu, Z ;
Chen, F ;
Fu, JJ ;
Chen, Y ;
Liu, BH ;
Ding, J ;
Dong, ZL ;
White, T .
APPLIED PHYSICS LETTERS, 2002, 80 (19) :3611-3613