Continuum percolation thresholds for mixtures of spheres of different sizes

被引:84
作者
Consiglio, R
Baker, DR
Paul, G [1 ]
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02115 USA
[2] Boston Univ, Dept Phys, Boston, MA 02115 USA
[3] Univ Vale Rio dos Sinos, Ctr Ciencias Exatas & Tecnol 93 022 000, Sao Leopoldo, RS, Brazil
[4] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2A7, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
continuum percolation;
D O I
10.1016/S0378-4371(02)01501-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Monte-Carlo simulations, we find the continuum percolation threshold of a three-dimensional mixture of spheres of two different sizes. We fix the value of r, the ratio of the volume of the smaller sphere to the volume of the larger sphere, and determine the percolation threshold for various values of x, the ratio of the number of larger objects to the number of total objects. The critical volume fraction increases from phi(c) = 0.28955 +/- 0.00007 for equal-sizcd spheres to a maximum of phi(c)(max) = 0.29731 +/- 0.00007 for x approximate to 0.11, an increase of 2.7%. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 23 条
[1]   SYSTEMATIC DERIVATION OF PERCOLATION THRESHOLDS IN CONTINUUM-SYSTEMS [J].
ALON, U ;
DRORY, A ;
BALBERG, I .
PHYSICAL REVIEW A, 1990, 42 (08) :4634-4638
[2]  
BAKER DR, IN PRESS PHYS REV E
[3]   EXCLUDED VOLUME AND ITS RELATION TO THE ONSET OF PERCOLATION [J].
BALBERG, I ;
ANDERSON, CH ;
ALEXANDER, S ;
WAGNER, N .
PHYSICAL REVIEW B, 1984, 30 (07) :3933-3943
[4]   UNIVERSAL PERCOLATION-THRESHOLD LIMITS IN THE CONTINUUM [J].
BALBERG, I .
PHYSICAL REVIEW B, 1985, 31 (06) :4053-4055
[5]   RECENT DEVELOPMENTS IN CONTINUUM PERCOLATION [J].
BALBERG, I .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06) :991-1003
[6]   Scaling corrections:: site percolation and Ising model in three dimensions [J].
Ballesteros, HG ;
Fernández, LA ;
Martín-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01) :1-13
[7]  
BUNDE A, 1996, FRACTAL DISORDERED S
[8]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[9]   ANALYTIC DERIVATION OF PERCOLATION THRESHOLDS IN ANISOTROPIC SYSTEMS OF PERMEABLE OBJECTS [J].
DRORY, A ;
BALBERG, I ;
ALON, U ;
BERKOWITZ, B .
PHYSICAL REVIEW A, 1991, 43 (12) :6604-6612
[10]   CRITICAL PROPERTIES OF THE VOID PERCOLATION PROBLEM FOR SPHERES [J].
ELAM, WT ;
KERSTEIN, AR ;
REHR, JJ .
PHYSICAL REVIEW LETTERS, 1984, 52 (17) :1516-1519