Lower critical solubility temperature materials as biofouling release agents

被引:61
作者
Ista, LK
Lopez, GP [1 ]
机构
[1] Univ New Mexico, Dept Chem & Nucl Engn, Farris Engn Ctr 209, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA
关键词
poly(N-isopropylacrylamide); Halomonas marina; fouling-release; LCST; smart polymers;
D O I
10.1038/sj.jim.2900490
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Poly(N-isopropylacrylamide) (PNIPAAM) exhibits a lower critical solubility temperature (LCST) of 32 degrees C, Using thin films of this compound as a model system, the potential of 'smart polymers' as biofouling-release agents was examined. PNIPAAM-coated glass slides were incubated in artificial sea water containing the marine bacterium Halomonas marina or in natural bay water at a temperature above the LCST, Upon rinsing of the biofouled samples with artificial sea water below the LCST, the dissolution of the coating released over 90% of the attached fouling material, a significant increase over the release obtained for glass controls, These experiments demonstrate the potential of PNIPAAM and similar polymers as possible fouling-release agents, and suggest that tethered PNIPAAM (or similar polymers) may be useful as regenerable fouling-release surfaces.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 18 条
[1]   SURFACE THERMODYNAMICS OF BACTERIAL ADHESION [J].
ABSOLOM, DR ;
LAMBERTI, FV ;
POLICOVA, Z ;
ZINGG, W ;
VANOSS, CJ ;
NEUMANN, AW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1983, 46 (01) :90-97
[2]   ONLINE MONITORING OF ANTIFOULING AND FOULING-RELEASE SURFACES USING BIOLUMINESCENCE AND FLUORESCENCE MEASUREMENTS DURING LAMINAR-FLOW [J].
ARRAGE, AA ;
VASISHTHA, N ;
SUNDBERG, D ;
BAUSCH, G ;
VINCENT, HL ;
WHITE, DC .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1995, 15 (04) :277-282
[3]   Neural cell pattern formation on glass and oxidized silicon surfaces modified with poly(N-isopropylacrylamide) [J].
Bohanon, T ;
Elender, G ;
Knoll, W ;
Koberle, P ;
Lee, JS ;
Offenhausser, A ;
Ringsdorf, H ;
Sackmann, E ;
Simon, J ;
Tovar, G ;
Winnik, FM .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1996, 8 (01) :19-39
[4]   BIOLOGICALLY-ACTIVE SURFACES - PROCESSES GOVERNING THE FORMATION AND PERSISTENCE OF BIOFILMS [J].
BRYERS, JD .
BIOTECHNOLOGY PROGRESS, 1987, 3 (02) :57-68
[5]   THE INFLUENCE OF LOW SURFACE-ENERGY MATERIALS ON BIOADHESION - A REVIEW [J].
CALLOW, ME ;
FLETCHER, RL .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 1994, 34 (3-4) :333-348
[6]   MOLECULAR APPROACHES TO NONTOXIC ANTIFOULING [J].
CLARE, AS ;
RITTSCHOF, D ;
GERHART, DJ ;
MAKI, JS .
INVERTEBRATE REPRODUCTION & DEVELOPMENT, 1992, 22 (1-3) :67-76
[7]   BACTERIAL BIOFILMS IN NATURE AND DISEASE [J].
COSTERTON, JW ;
CHENG, KJ ;
GEESEY, GG ;
LADD, TI ;
NICKEL, JC ;
DASGUPTA, M ;
MARRIE, TJ .
ANNUAL REVIEW OF MICROBIOLOGY, 1987, 41 :435-464
[8]   Unification of the genera Deleya (Baumann et al 1983), Halomonas (Vreeland et al 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae [J].
Dobson, SJ ;
Franzmann, PD .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1996, 46 (02) :550-558
[9]  
Galaev I.Yu., 1995, RUSS CHEM REV, V64, P471, DOI [DOI 10.1070/RC1995V064N05ABEH000161, 10.1070/RC1995v064n05ABEH000161]
[10]  
Guillet J.E., 1968, J. Macromol. Sci. Part A-Chem, V2, P1441, DOI DOI 10.1080/10601326808051910