Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation

被引:292
作者
Reddy, S. K.
Rape, M.
Margansky, W. A.
Kirschner, M. W. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[2] Harvard Mit Div Hlth Sci & Technol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature05734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eukaryotic cells rely on a surveillance mechanism known as the spindle checkpoint to ensure accurate chromosome segregation. The spindle checkpoint prevents sister chromatids from separating until all kinetochores achieve bipolar attachments to the mitotic spindle(1-3). Checkpoint proteins tightly inhibit the anaphase-promoting complex (APC), a ubiquitin ligase required for chromosome segregation and progression to anaphase. Unattached kinetochores promote the binding of checkpoint proteins Mad2 and BubR1 to the APC-activator Cdc20, rendering it unable to activate APC. Once all kinetochores are properly attached, however, cells inactivate the checkpoint within minutes, allowing for the rapid and synchronous segregation of chromosomes(4). How cells switch from strong APC inhibition before kinetochore attachment to rapid APC activation once attachment is complete remains a mystery. Here we show that checkpoint inactivation is an energy-consuming process involving APC-dependent multi-ubiquitination. Multi-ubiquitination by APC leads to the dissociation of Mad2 and BubR1 from Cdc20, a process that is reversed by a Cdc20-directed de-ubiquitinating enzyme(5). The mutual regulation between checkpoint proteins and APC leaves the cell poised for rapid checkpoint inactivation and ensures that chromosome segregation promptly follows the completion of kinetochore attachment. In addition, our results suggest a mechanistic basis for how cancer cells can have a compromised spindle checkpoint without corresponding mutations in checkpoint genes(6).
引用
收藏
页码:921 / 925
页数:5
相关论文
共 22 条
[1]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[2]   The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint [J].
De Antoni, A ;
Pearson, CG ;
Cimini, D ;
Canman, JC ;
Sala, V ;
Nezi, L ;
Mapelli, M ;
Sironi, L ;
Faretta, M ;
Salmon, ED ;
Musacchio, A .
CURRENT BIOLOGY, 2005, 15 (03) :214-225
[3]   Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex [J].
Fang, GW .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (03) :755-766
[4]   Budding yeast Cdc20: A target of the spindle checkpoint [J].
Hwang, LH ;
Lau, LF ;
Smith, DL ;
Mistrot, CA ;
Hardwick, KG ;
Hwang, ES ;
Amon, A ;
Murray, AW .
SCIENCE, 1998, 279 (5353) :1041-1044
[5]   The Mad2 spindle checkpoint protein has two distinct natively folded states [J].
Luo, XL ;
Tang, ZY ;
Xia, GH ;
Wassmann, K ;
Matsumoto, T ;
Rizo, J ;
Yu, HT .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (04) :338-345
[6]   The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20 [J].
Luo, XL ;
Tang, ZY ;
Rizo, J ;
Yu, HT .
MOLECULAR CELL, 2002, 9 (01) :59-71
[7]   Determinants of conformational dimerization of Mad2 and its inhibition by p31comet [J].
Mapelli, M ;
Filipp, FV ;
Rancati, G ;
Massimiliano, L ;
Nezi, L ;
Stier, G ;
Hagan, RS ;
Confalonieri, S ;
Piatti, S ;
Sattler, M ;
Musacchio, A .
EMBO JOURNAL, 2006, 25 (06) :1273-1284
[8]   The spindle checkpoint: Structural insights into dynamic signalling [J].
Musacchio, A ;
Hardwick, KG .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (10) :731-741
[9]  
Okamoto Y, 2003, CANCER RES, V63, P4167
[10]   UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas [J].
Pallante, P ;
Berlingieri, MT ;
Troncone, G ;
Kruhoffer, M ;
Orntoft, TF ;
Viglietto, G ;
Caleo, A ;
Migliaccio, I ;
Decaussin-Petrucci, M ;
Santoro, M ;
Palombini, L ;
Fusco, A .
BRITISH JOURNAL OF CANCER, 2005, 93 (04) :464-471