Activation of peroxynitrite by inducible nitric-oxide synthase -: A direct source of nitrative stress

被引:29
作者
Marechal, Amandine
Mattioli, Tony A.
Stuehr, Dennis J.
Santolini, Jerome [1 ]
机构
[1] CEA Saclay, Lab Stress Oxydant & Detoxicat, iBiTec S, F-91191 Gif Sur Yvette, France
[2] Cleveland Clin, Lerner Res Inst, Dept Pathobiol, Cleveland, OH 44195 USA
关键词
D O I
10.1074/jbc.M609237200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In mammals, nitric oxide (NO) is an essential biological mediator that is exclusively synthesized by nitric-oxide synthases (NOSs). However, NOSs are also directly or indirectly responsible for the production of peroxynitrite, a well known cytotoxic agent involved in numerous pathophysiological processes. Peroxynitrite reactivity is extremely intricate and highly depends on activators such as hemoproteins. NOSs present, therefore, the unique ability to both produce and activate peroxynitrite, which confers upon them a major role in the control of peroxynitrite bioactivity. We report here the first kinetic analysis of the interaction between peroxynitrite and the oxygenase domain of inducible NOS (iNOSoxy). iNOSoxy binds peroxynitrite and accelerates its decomposition with a second order rate constant of 22 x 10(4) m(-1)s(-1) at pH 7.4. This reaction is pH-dependent and is abolished by the binding of substrate or product. Peroxynitrite activation is correlated with the observation of a new iNOS heme intermediate with specific absorption at 445 nm. iNOSoxy modifies peroxynitrite reactivity and directs it toward one-electron processes such as nitration or one-electron oxidation. Taken together our results suggest that, upon binding to iNOSoxy, peroxynitrite undergoes homolytic cleavage with build-up of an oxo-ferryl intermediate and concomitant release of a NO2. radical. Successive cycles of peroxynitrite activation were shown to lead to iNOSoxy autocatalytic nitration and inhibition. The balance between peroxynitrite activation and self-inhibition of iNOSoxy may determine the contribution of NOSs to cellular oxidative stress.
引用
收藏
页码:14101 / 14112
页数:12
相关论文
共 70 条
[1]   Analysis of neuronal NO synthase under single-turnover conditions: Conversion of N-omega-hydroxyarginine to nitric oxide and citrulline [J].
AbuSoud, HM ;
Presta, A ;
Mayer, B ;
Stuehr, DJ .
BIOCHEMISTRY, 1997, 36 (36) :10811-10816
[2]   Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase - Implications for mechanism [J].
Adak, S ;
Wang, Q ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (43) :33554-33561
[3]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[4]   KINETICS AND MECHANISM OF THERMAL-OXIDATION AND PHOTOOXIDATION OF NITROSYLMYOGLOBIN IN AQUEOUS-SOLUTION [J].
ANDERSEN, HJ ;
SKIBSTED, LH .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1992, 40 (10) :1741-1750
[5]  
Arnold EV, 1996, METHOD ENZYMOL, V269, P41
[6]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[7]   Nitric oxide and the immune response [J].
Bogdan, C .
NATURE IMMUNOLOGY, 2001, 2 (10) :907-916
[8]   Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite [J].
Bonini, MG ;
Augusto, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :9749-9754
[9]   Nitric oxide signaling specificity - the heart of the problem [J].
Bredt, DS .
JOURNAL OF CELL SCIENCE, 2003, 116 (01) :9-15
[10]   Structure of nitric oxide synthase oxygenase dimer with pterin and substrate [J].
Crane, BR ;
Arvai, AS ;
Ghosh, DK ;
Wu, CQ ;
Getzoff, ED ;
Stuehr, DJ ;
Tainer, JA .
SCIENCE, 1998, 279 (5359) :2121-2126