Packing strips in the hyperbolic plane

被引:6
作者
Marshall, TH [1 ]
Martin, GJ [1 ]
机构
[1] Univ Auckland, Dept Math, Auckland, New Zealand
关键词
strip; horodisc; packing; density; hyperbolic plane; Fuchsian group;
D O I
10.1017/S0013091502000081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A strip of radius r in the hyperbolic plane is the set of points within distance r of a given geodesic. We define the density of a packing of strips of radius r and prove that this density cannot exceed S(r) = 3/pi sinh r arccosh (1 + 1/2 sinh(2)r). This bound is sharp for every value of r and provides sharp bounds on collaring theorems for simple geodesics on surfaces.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 7 条
[1]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR
[2]  
Fejes Toth L., 1964, REGULAR FIGURES
[3]  
Gehring FW, 1998, J DIFFER GEOM, V49, P411
[4]  
KEEN L, 1973, ANN MATH STUD, V79, P263
[5]  
MARSHALL TH, UNPUB CYLINDER HOROB
[6]  
Ratcliffe J. G., 1994, FDN HYPERBOLIC MANIF
[7]  
SELBERG A, 1960, DISCONTINUOUS GROUPS