A statistical perspective on gene expression data analysis

被引:18
作者
Satagopan, JM [1 ]
Panageas, KS [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
关键词
class discovery; class prediction; hierarchical clustering; multiple correction; classification; Fisher's linear discriminant function; compound covariate predictor;
D O I
10.1002/sim.1350
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rapid advances in biotechnology have resulted in an increasing interest in the use of oligonucleotide and spotted cDNA gene expression microarrays for medical research. These arrays are being widely used to understand the underlying genetic structure of various diseases, with the ultimate goal to provide better diagnosis, prevention and cure. This technology allows for measurement of expression levels from several thousands of genes simultaneously, thus resulting in an enormous amount of data. The role of the statistician is critical to the successful design of gene expression studies, and the analysis and interpretation of the resulting voluminous data. This paper discusses hypotheses common to gene expression studies, and describes some of the statistical methods suitable for addressing these hypotheses. S-plus and SAS codes to perform the statistical methods are provided. Gene expression data from an unpublished oncologic study is used to illustrate these methods. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:481 / 499
页数:19
相关论文
共 38 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[3]  
[Anonymous], 2000, AFFYMETRIX MICROARRA
[4]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[5]  
Chen Y, 1997, J Biomed Opt, V2, P364, DOI 10.1117/12.281504
[6]   Genomic analysis of metastasis reveals an essential role for RhoC [J].
Clark, EA ;
Golub, TR ;
Lander, ES ;
Hynes, RO .
NATURE, 2000, 406 (6795) :532-535
[7]   In vivo regulation of human skeletal muscle gene expression by thyroid hormone [J].
Clément, K ;
Viguerie, N ;
Diehn, M ;
Alizadeh, A ;
Barbe, P ;
Thalamas, C ;
Storey, JD ;
Brown, PO ;
Barsh, GS ;
Langin, D .
GENOME RESEARCH, 2002, 12 (02) :281-291
[8]   Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion [J].
Coller, HA ;
Grandori, C ;
Tamayo, P ;
Colbert, T ;
Lander, ES ;
Eisenman, RN ;
Golub, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3260-3265
[9]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[10]  
Dudoit S, 2000, 578 U CAL DEP STAT