Master integrals for the two-loop light fermion contributions to gg→H and H→γγ

被引:58
作者
Aglietti, U
Bonciani, R
Degrassi, G
Vicini, A
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[3] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany
[4] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[5] Ist Nazl Fis Nucl, I-00146 Rome, Italy
[6] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[7] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
关键词
Feynman diagrams; multi-loop calculations;
D O I
10.1016/j.physletb.2004.09.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give the analytic expressions of the eight master integrals entering our previous computation of two-loop light fermion contributions to gg --> H and H --> gammagamma. The results are expressed in terms of generalized harmonic polylogarithms with maximum weight four included. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 19 条
[1]   Master integrals with 2 and 3 massive propagators for the 2-loop electroweak form factor-planar case [J].
Aglietti, U ;
Bonciani, R .
NUCLEAR PHYSICS B, 2004, 698 (1-2) :277-318
[2]   Two-loop light fermion contribution to Higgs production and decays [J].
Aglietti, U ;
Bonciani, R ;
Degrassi, G ;
Vicini, A .
PHYSICS LETTERS B, 2004, 595 :432-441
[3]   Master integrals with one massive propagator for the two-loop electroweak form factor [J].
Aglietti, U ;
Bonciani, R .
NUCLEAR PHYSICS B, 2003, 668 (1-2) :3-76
[4]   METHOD OF GAUGE-INVARIANT REGULARIZATION [J].
ASHMORE, JF .
LETTERE AL NUOVO CIMENTO, 1972, 4 (08) :289-+
[5]   LOWEST ORDER DIVERGENT GRAPHS IN NU-DIMENSIONAL SPACE [J].
BOLLINI, CG ;
GIAMBIAGI, JJ .
PHYSICS LETTERS B, 1972, B 40 (05) :566-+
[6]  
BOLLINI CG, 1972, NUOV CIMEN S I FIS B, VB 12, P20
[7]  
Caffo M, 1998, ACTA PHYS POL B, V29, P2627
[8]   ANALYTIC RENORMALIZATION VIA CONTINUOUS SPACE DIMENSION [J].
CICUTA, GM ;
MONTALDI, E .
LETTERE AL NUOVO CIMENTO, 1972, 4 (09) :329-&
[9]   DIMENSIONAL REGULARIZATION OF INFRARED PROBLEM [J].
GASTMANS, R ;
MEULDERMANS, R .
NUCLEAR PHYSICS B, 1973, B 63 (OCT22) :277-284
[10]   Numerical evaluation of harmonic polylogarithms [J].
Gehrmann, T ;
Remiddi, E .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 141 (02) :296-312