Orthogonal harmonic analysis and scaling of fractal measures

被引:2
作者
Jorgensen, PET [1 ]
Pedersen, S
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Wright State Univ, Dept Math, Dayton, OH 45435 USA
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 03期
关键词
D O I
10.1016/S0764-4442(97)82984-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that certain iteration systems lead to fractal measures admitting exact orthogonal harmonic analysis.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 16 条
[1]  
BJORCK G, 1995, CR ACAD SCI I-MATH, V320, P319
[2]   ON 1ST ORDER PARTIAL-DIFFERENTIAL OPERATORS ON BOUNDED REGIONS OF THE PLANE [J].
FRIEDRICH, J .
MATHEMATISCHE NACHRICHTEN, 1987, 131 :33-47
[3]  
Fuglede B., 1974, Journal of Functional Analysis, V16, P101, DOI 10.1016/0022-1236(74)90072-X
[4]  
HAAGERUP U, 1995, ORTHOGONAL MAXIMAL A
[5]  
Jorgensen PET, 1996, CONSTR APPROX, V12, P1
[6]   SPECTRAL THEORY OF FINITE VOLUME DOMAINS IN RN [J].
JORGENSEN, PET .
ADVANCES IN MATHEMATICS, 1982, 44 (02) :105-120
[7]   SPECTRAL THEORY FOR BOREL SETS IN RN OF FINITE MEASURE [J].
JORGENSEN, PET ;
PEDERSEN, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 107 (01) :72-104
[8]  
JORGENSEN PET, 1997, DENSE ANAL SUBSPACES
[9]  
JORGENSEN PET, 1997, SPECTRAL PAIRS CARTE
[10]   Structure of tilings of the line by a function [J].
Kolountzakis, MN ;
Lagarias, JC .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) :653-678