In this paper we describe the synthesis, structure-activity relationship (SAR), and biochemical characterization of N-(4-phenylthiazol-2-yl)benzenesulfonamides as inhibitors of kynurenine 3-hydroxylase. The compounds 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulfonamide 16 (IC(50) = 37 nM, Ro-61-8048) and 4-amino-N-[4-[2-fluoro-5-(trifluoromethyl)phenyl]-thiazol-2-yl]benzenesulfonamide 20 (IC(50) = 19 nM) were found to be high-affinity inhibitors of this enzyme in vitro. In addition, both compounds blocked rat and gerbil kynurenine 3-hydroxylase after oral administration, with ED(50)'s in the 3-5 mu mol/kg range in gerbil brain. In a microdialysis experiment in rats, 16 dose dependently increased kynurenic acid concentration in the extracellular hippocampal fluid. A dose of 100 mu mol/kg po led to a 7.5-fold increase in kynurenic acid outflow. These new compounds should allow detailed investigation of the pathophysiological role of the kynurenine pathway after neuronal injury.